[发明专利]一种区域性气候特征分类及代表性格点选取方法在审
| 申请号: | 202111131118.4 | 申请日: | 2021-09-26 |
| 公开(公告)号: | CN113837288A | 公开(公告)日: | 2021-12-24 |
| 发明(设计)人: | 程冠辉;黄国和;董聪 | 申请(专利权)人: | 华北电力大学 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62;G06Q10/06 |
| 代理公司: | 北京众合诚成知识产权代理有限公司 11246 | 代理人: | 陈波 |
| 地址: | 102206 *** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 区域 性气候 特征 分类 代表 性格 选取 方法 | ||
本发明公开了一种区域性气候系统特征分类及代表性格点选取方法,首先,获取多格点的气候观测数据,递归推断格点分类RIGG;接着,评估气候特征的分类结果的多维特征;然后,选取代表性格点;最后基于多因子多水平析因分析进行参数敏感分析,从而实现气候分类及格点选取中技术参数敏感性的量化表征。
技术领域
本发明属于应用气候学领域,涉及一种区域性气候系统特征分类及代表性格点的选取方法。
背景技术
大尺度的气候变化影响评估、适应和应对(LSCCIAA)需要气候特征分类及代表性格点选取来克服模拟计算的复杂性。现有的气候分类技术,如K均值分类、自组织图和模糊分类等,缺乏严谨的统计推理,难以有效反映气候特征的时空异质性和分类结果的多维特征。同时,现有的格点选取技术,如随机、均值和主观选取等,未能定量分析格点代表性及其随气候分类、气候指标、格点和时间的复杂变化。现有相关技术的这些缺陷使得最终选取的区域气候格点的代表性不足,进而降低了相应的LSCCIAA措施的可靠性,或将给社会经济和生态环境带来严重影响。
本发明的目的即在于应对现有技术的不足,提供一种区域性气候系统特征分类及代表性格点选取方法,通过析因推断格点分类和代表性分析(FIGGRA),以克服现有相关技术的缺陷,实现系统性的区域气候特征代表性格点选取、科学支撑LSCCIAA决策。
发明内容
本发明提供了一种区域性气候系统特征分类及代表性格点选取方法,包括以下步骤;
步骤1、递归推断格点分类RIGG,包括:获取多格点的历史气候观测数据,将包括降水和温度的气候变量的多格点上的多年气候观测数据序列表征为矩阵,应用SW检验法对所述序列进行正态分布检验,如果任一序列不服从正态分布,则采用离散式概率分布间可逆转化方法DTT进行分布转化,将其转化为正态分布;通过逐列排序和逐行划分,将所述矩阵拆为两个子矩阵,利用MNV检验统计检验分析两个子矩阵的差异是否显著,从而将所述矩阵拆分为相互之间差异显著而内部差异不显著的两个子矩阵,实现气候特征的分类;
步骤2、评估步骤1所得到的气候特征的分类结果的多维特征,包括:假设步骤1中所述矩阵被划分为了R个子矩阵,即包括R个气候类别,则基于用于衡量两个序列近似程度的Nash系数,设计量化气候分类效果的各气候类别内部相似性指数、各气候类别间相异性指数以及整体的分类有效性指数;
步骤3、选取代表性格点,包括:设计用于量化代表性格点与非代表性格点间的相似性、代表性格点与类均值间的相似性以及代表性格点与非代表性格点间的最低相似性的三种表征指数;设计衡量格点整体代表性的指数,以实现每个气候类别中的代表性格点;
步骤4、基于多因子多水平析因分析进行参数敏感分析,包括:针对分布转化参数Nml、统计显著性水平α和类别最小格点数Nmin,构建它们的不同组合及相应的分类和格点选取结果;基于方差分析,定量解析分布转化参数Nml、统计显著性水平α和类别最小格点数Nmin的单独或联合变化对结果方差的影响,从而实现气候分类及格点选取中技术参数敏感性的量化表征。
附图说明
图1是区域性气候系统特征分类及代表性格点选取方法FIGGRA的框架图。
图2是FIGGRA方法在黄土高原气候分类和代表性格点选取中的应用效果。
具体实施方式
以下结合附图,详细说明本发明的具体实施方式。需要指出的是,此处的具体实施方式只是为了示例性阐述本发明,只是本发明的优选实施例,而不应被视为对本发明的限制,任何不脱离本发明主旨的变体或要素的等效替代均落入本发明的范围。
图1是区域性气候系统特征分类及代表性格点选取方法FIGGRA的框架图。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华北电力大学,未经华北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111131118.4/2.html,转载请声明来源钻瓜专利网。





