[发明专利]一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法在审

专利信息
申请号: 201911118423.2 申请日: 2019-11-15
公开(公告)号: CN110889345A 公开(公告)日: 2020-03-17
发明(设计)人: 陶洋;孙雨浩;胡昊;鲍灵浪;郭坦 申请(专利权)人: 重庆邮电大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 暂无信息 代理人: 暂无信息
地址: 400065*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 协作 表示 分类 判别 矩阵 恢复 遮挡 识别 方法
【说明书】:

发明提供了一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法,属于模式识别领域。本方法针对训练样本和测试样本均受到严重的噪声污染的人脸识别问题提出解决方法。首先通过在低秩矩阵恢复中引入结构非相关性约束,从被污损的训练样本中恢复出干净的训练样本,然后通过学习原始污损数据与干净的低秩数据的低秩投影矩阵,将受污损的测试样本投影到相应的底层子空间来进行修正。最后,利用CRC对测试样本图像进行分类,获取识别结果。本方法不仅可以恢复出具有更强判别信息的干净人脸图像,而且还可以保持原始数据的局部几何结构,大大提高了遮挡人脸图像的识别率,具有更好的识别性能,使得在现实世界应用中的遮挡人脸识别更实用。

技术领域

本发明属于模式识别和生物特征识别技术领域,主要是涉及一种基于协作表示与分类的判别低秩矩阵恢复遮挡人脸识别方法。

背景技术

近年来,随着科技的发展,人脸识别技术成为模式识别领域的研究热点,也是生物特征识别领域的重要组成部分,被广泛地应用在社会各个领域。虽然目前人脸识别技术已经取得了长足的进展,但是在现实应用中仍然面临着巨大的挑战。一般人脸识别都要求训练样本不受噪声污染,即前提条件是这些识别的方法都是基于单一样本的单一个体的图像位于同一低秩子空间,但是现实场景中,通常都会受到比如姿势、光照、表情变化以及遮挡的各种影响。

在测试和训练样本图像没有受到影响的情况下,稀疏表示的分类(SparseRepresentation Classification,SRC)算法的识别性能较好,否则识别性能就会明显降低。为了提高SRC的性能,Wright等人提出了鲁棒SRC(Robust SRC,RSRC)模型,然而,由于l1范数最小化和单位遮挡字典中存在大量的原子,使得SRC方案在计算上代价很高。基于此,Deng等人提出一种扩展稀疏表示(Extended Sparse Representation Classification,ESRC)算法,该方法用训练样本减去其对应的类均值得到误差字典,取得了较好的稀疏表示结果。但是由于遮挡字典也不能很好描述图像的污损以及还需要针对l1范数进行相应的优化等。

针对此问题,众多学者都在关注如何提高l1范数的计算速度,却忽略了表示的协作性。协作性即由于不同人的面部图像具有相似性,若第i个人与第j个人的图像很相似,那么第j类的训楼样本可以用于表示来自第i类的测试样本。Zhang等人根据上述思想,提出了协作表示分类的方法(Collaborative Representation Classification,CRC)。CRC在计算协作表示系数时,放松对稀疏性的要求,重点关注表示样本的协作性,用l2范数代替l1范数,提高了人脸识别的鲁棒性,而且大大降低了复杂度。

如果所有的训练样本都得到很好的控制,即在合理的姿态和光照下,没有噪声污染和遮挡,CRC对有污损和遮挡的测试样本具有很强的鲁棒性,实现了较高的人脸识别精度。但是,当测试样本和训练样本都被遮挡或者污损时,CRC的性能也会下降。Candès等人提出的鲁棒主成分分析(Robust Principal ComponentAnalysis,RPCA),该方法假设所有数据都在一个子空间中,然后从污损的数据矩阵中恢复一个低秩数据矩阵。但是当数据样本来自多个子空间时,此方法性能也达不到理想的效果;Liu等人提出了低秩表示(Low-rankRepresentati-,on,LRR)算法,不仅可以在测试样本和训练样本均受到污染的情况下有效恢复出“干净”的人脸图像和误差图像,还在一定程度上解决了训练样本来自不同子空间的问题。

近几年很多文献显示,低秩矩阵恢复的方法从不同的角度被运用在图像分类领域。胡正平等利用得到低秩和误差矩阵后,使用这两个矩阵来表达测试样本。杜海顺等也利用LRR对训练数据进行恢复,提出了基于低秩恢复稀疏表示分类算法。何林知等利用RPCA算法对训练样本进行低秩恢复后,使用协同表示分类方法对测试样本进行识别。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911118423.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top