[发明专利]一种基于容积卡尔曼滤波算法的分布式状态估计方法有效
申请号: | 201910449938.4 | 申请日: | 2019-05-27 |
公开(公告)号: | CN110289989B | 公开(公告)日: | 2022-10-25 |
发明(设计)人: | 陈从颜;宋文彬;李宇;范波;李世华 | 申请(专利权)人: | 东南大学 |
主分类号: | H04L41/147 | 分类号: | H04L41/147;H04L25/02;H04W84/18;G06F17/15;G06F17/16 |
代理公司: | 南京众联专利代理有限公司 32206 | 代理人: | 许小莉 |
地址: | 210096 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于容积卡尔曼滤波算法的分布式状态估计方法。该方法包括以下步骤:S1:初始化:获取传感器网络中给定的初始状态估计值和初始误差协方差矩阵;S2:在传感器网络中,各个传感器节点收集观测值,利用容积卡尔曼滤波算法,获得此刻的状态估计值和误差协方差矩阵;S3:各个传感器节点,与其邻居传感器节点相互广播状态估计值和误差协方差矩阵,采用平均一致性算法,修正当前的状态估计值和误差协方差矩阵;S4:各个传感器节点计算下一时刻的状态预测值和误差协方差预测值,返回步骤S2循环。本发明无需构造伪观测矩阵,可有效防止滤波发散。 | ||
搜索关键词: | 一种 基于 容积 卡尔 滤波 算法 分布式 状态 估计 方法 | ||
【主权项】:
1.一种基于容积卡尔曼滤波算法的分布式状态估计方法,其特征在于:该方法包括以下步骤:S1:初始化:获取传感器网络中给定的初始状态估计值和初始误差协方差矩阵;S2:在传感器网络中,各个传感器节点收集观测值,利用容积卡尔曼滤波算法,获得此刻的状态估计值和误差协方差矩阵;S3:各个传感器节点,与其邻居传感器节点相互广播状态估计值和误差协方差矩阵,采用平均一致性算法,修正当前的状态估计值和误差协方差矩阵;S4:各个传感器节点计算下一时刻的状态预测值和误差协方差预测值,返回步骤S2循环。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910449938.4/,转载请声明来源钻瓜专利网。