[发明专利]一种基于模态当量标准化的桥梁性能异常预警方法在审
申请号: | 202210579441.6 | 申请日: | 2022-05-26 |
公开(公告)号: | CN114969638A | 公开(公告)日: | 2022-08-30 |
发明(设计)人: | 伊廷华;王镇;杨东辉;李宏男 | 申请(专利权)人: | 大连理工大学 |
主分类号: | G06F17/15 | 分类号: | G06F17/15;G06F17/16;G08B21/18 |
代理公司: | 辽宁鸿文知识产权代理有限公司 21102 | 代理人: | 许明章;王海波 |
地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 当量 标准化 桥梁 性能 异常 预警 方法 | ||
本发明属于桥梁健康监测领域,提出了一种基于模态当量标准化的桥梁性能异常预警方法。首先,定义桥梁模态基准数据库;然后,基于邻近性度量实现基准库中每个模态特征的k近邻样本的自动化搜索与邻域集合构造;其次,计算局部化邻域集合的均值和标准差并进行标准化处理,以实现数据全局统计量的当量表征;再次,基于慢特征分析提取模态当量值中表征结构动态性的慢变特征;最后,构造基于桥梁模态慢特征的异常预警统计量并确定其合理阈值。本发明无需环境测量数据即可实现原始模态数据的高斯化和线性化,解决了环境时变效应引起的模态数据的非高斯性和模态变量间非线性相关问题,对桥梁性能异常预警具有重要工程实用价值。
技术领域
本发明属于桥梁健康监测领域,涉及一种基于模态当量标准化的桥梁性能异常预警方法。
背景技术
基于桥梁模态频率变化来反映结构整体服役性能和损伤状况已成为桥梁性能异常预警的研究热点。现有预警方法多建立在损伤会引起结构动力特性改变的假设基础上,然而桥梁在服役期间,由于多种运营环境因素(温度、湿度、风速、交通荷载)的影响,桥梁模态频率会随时间变化且在一个较宽的范围内波动,这会湮没损伤所造成的模态频率改变。忽视或未能准确剔除环境时变效应引起的模态变异,将会降低桥梁健康状态评定结果的可信度。因此,消除运营环境因素对实测桥梁模态频率的影响,对于提高桥梁损伤诊断和状态评估的准确性具有重要的工程现实意义。
在分离环境时变效应影响方面,仅基于结构响应的非参数化方法将环境因素视为模态频率的潜在影响变量,其根据结构损伤与环境因素引起的模态频率改变间的正交性,分离出损伤引起的模态变化,结合统计模式识别技术实现结构损伤识别。因为该方法具有无需环境测量数据的独特优势,而成为桥梁健康监测领域的研究热点。然而,多数非参数化方法需要进行数据标准化且数据需要服从多元高斯分布的前提假定,如朱军华和余岭(结构损伤响应时程主成分及其相关性分析)研究表明主成分分析等降维方法需要执行数据标准化处理;Silva等(Agglomerative concentric hypersphere clustering applied tostructural damage detection)研究表明传统马氏距离方法需要桥梁监测数据满足单一的多元分布假定;但Figueiredo和Cross(Linear approaches to modelingnonlinearities in long-term monitoring of bridges)及Sarmadi和Karamodin(Anovel anomaly detection method based on adaptive Mahalanobis-squared distanceand one-class KNN rule for structural health monitoring under environmentaleffects)研究发现由于受环境时变效应的影响,桥梁模态变化呈现出明显的季节特性,即数据分布呈现出明显的非高斯性。传统的数据标准化策略通过对数据进行平移和缩放变换,来保证数据样本在各个坐标轴上的分布处于同一范围内,以达到变量量纲消除的目的;但由于传统标准化策略使用的是数据的全局均值和标准差,其并未考虑数据分布的异质性,因此标准化数据的非高斯分布特性并未发生改变,这会导致传统方法预警效果并不理想[1-3]。此外,环境影响下模态变量之间的非线性相关问题也制约了该方法的工程实用化。因此,充分考虑桥梁模态样本间的变化特征,提取表征结构动态性的慢变波动特征,以避免模态频率中潜在环境或损伤特征信息的丢失,对于提高异常预警效果具有重要的意义。为解决桥梁模态非高斯分布特性和模态变量间的非线性相关问题,亟需开发简单实用且较为可靠的桥梁性能异常预警方法。
发明内容
本发明旨在提出一种基于模态当量标准化的桥梁性能异常预警方法。其技术方案是:首先,定义桥梁模态基准数据库;然后,基于邻近性度量实现基准库中每个模态特征的k近邻样本的自动化搜索与邻域集合构造;其次,计算局部化邻域集合的基本统计量(均值和标准差)并进行标准化处理,以实现数据全局统计量的当量表征;再次,基于慢特征分析提取模态当量值中表征结构动态性的慢变特征;最后,构造基于桥梁模态慢特征的异常预警统计量并确定其合理阈值。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210579441.6/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种放射影像角度调整装置
- 下一篇:整流器及连续对数检波器