[发明专利]基于耦合张量分解的L型互质阵列波达方向估计方法有效

专利信息
申请号: 202110781692.8 申请日: 2021-07-09
公开(公告)号: CN113552532B 公开(公告)日: 2022-03-22
发明(设计)人: 郑航;周成伟;颜成钢;陈剑;史治国;陈积明 申请(专利权)人: 浙江大学
主分类号: G01S3/14 分类号: G01S3/14
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 刘静
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 耦合 张量 分解 型互质 阵列 方向 估计 方法
【说明书】:

发明公开了一种基于耦合张量分解的L型互质阵列波达方向估计方法,主要解决现有方法中多维信号结构受损和虚拟域信号关联信息丢失的问题,其实现步骤是:构建子阵分置的L型互质阵列并进行接收信号建模;推导L型互质阵列接收信号的四阶协方差张量;推导对应增广虚拟均匀十字阵列的四阶虚拟域信号;平移分割虚拟均匀十字阵列;通过叠加平移虚拟域信号构造耦合虚拟域张量;通过耦合虚拟域张量分解获得波达方向估计结果。本发明充分利用所构建的子阵分置L型互质阵列虚拟域张量统计量的空间关联属性,通过耦合虚拟域张量处理实现了高精度的二维波达方向估计,可用于目标定位。

技术领域

本发明属于阵列信号处理技术领域,尤其涉及基于多维稀疏阵列虚拟域高阶统计量的统计信号处理技术,具体是一种基于耦合张量分解的L型互质阵列波达方向估计方法,可用于目标定位。

背景技术

互质阵列作为一种具有系统化结构的稀疏阵列,具备大孔径、高分辨率、高自由度的优势,能够突破奈奎斯特采样速率的限制,实现波达方向估计综合性能的提升。为了在互质阵列场景下实现匹配奈奎斯特采样速率的波达方向估计,常用做法是将互质阵列接收信号推导至二阶统计量模型,通过构造增广的虚拟均匀阵列实现基于虚拟域信号处理的波达方向估计。然而,现有方法通常将接收信号建模成矢量,并通过矢量化接收信号协方差矩阵推导虚拟域信号。在部署多维互质阵列的场景中,由于接收信号涵盖多维度的时空信息,矢量化信号的处理方法不仅损失了互质阵列接收信号的结构化信息,且由矢量化推导得到的虚拟域信号模型存在结构受损、线性尺度过大等问题。另一方面,由于对应虚拟均匀阵列的虚拟域信号是单快拍信号,因此虚拟域信号统计量存在秩亏问题;为了解决该问题,传统基于空间平滑的方法将虚拟域信号进行分割,并对分割后的虚拟域信号进行平均统计处理以得到满秩的虚拟域信号统计量,从而实现有效的波达方向估计。然而,这类做法往往忽略了被分割虚拟域信号之间的空间关联属性,统计平均的处理过程造成了性能损失。

针对以上问题,为了保留多维接收信号的结构化信息,张量作为一种多维的数据类型,开始被应用于阵列信号处理领域,用于表征涵盖复杂电磁信息的接收信号;通过对其进行多维特征提取,可实现高精度的波达方向估计。然而,现有张量信号处理方法仅仅在匹配奈奎斯特采样速率的前提下有效,尚未涉及到互质阵列稀疏信号的统计分析及其虚拟域拓展。另一方面,传统的张量信号特征提取方法往往是针对单个独立张量进行分解,而当存在多个具备空间关联属性的张量信号时,缺乏有效的多维特征联合提取手段。为此,如何在多维互质阵列的场景下结合虚拟域张量建模和虚拟域信号关联处理,实现高精度的二维波达方向估计,仍然是一个亟待解决的问题。

发明内容

本发明的目的在于针对现有方法存在的多维信号结构受损和虚拟域信号关联信息丢失问题,提出一种基于耦合张量分解的L型互质阵列波达方向估计方法,为建立L型互质阵列增广虚拟域与张量信号建模的联系,充分挖掘多维虚拟域张量统计量的关联信息,以实现高精度的二维波达方向估计提供了可行的思路和有效的解决方案。

本发明的目的是通过以下技术方案来实现的:一种基于耦合张量分解的L型互质阵列波达方向估计方法,该方法包含以下步骤:

(1)接收端使用个物理天线阵元,构建一个子阵分置的L型互质阵列;该L型互质阵列由位于x轴和y轴上的两个互质线性阵列组成,两个互质线性阵列和的首阵元分别从xoy坐标系上(1,0)和(1,0)位置开始布设;互质线性阵列中包含个阵元,其中,和为一对互质整数,|·|表示集合的势;分别用和表示L型互质阵列中各阵元在x轴和y轴上的位置,其中,单位间隔d取为入射窄带信号波长的一半;

假设有K个来自方向的远场窄带非相干信号源,则组成L型互质阵列的互质线性阵列接收信号建模为:

其中,sk=[sk,1,sk,2,...,sk,T]T为对应第k个入射信号源的多快拍采样信号波形,T为采样快拍数,表示矢量外积,为与各信号源相互独立的噪声,为的导引矢量,对应于来波方向为的信号源,表示为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110781692.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top