[发明专利]图像分析方法、装置、设备及存储介质在审

专利信息
申请号: 202010500297.3 申请日: 2020-06-04
公开(公告)号: CN111815557A 公开(公告)日: 2020-10-23
发明(设计)人: 姚广;高耀宗;周翔;詹翊强 申请(专利权)人: 上海联影智能医疗科技有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06T7/60;G06T7/11;G06K9/32;G06N3/04;G06N3/08
代理公司: 广州三环专利商标代理有限公司 44202 代理人: 郝传鑫;贾允
地址: 200232 上海市徐*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 分析 方法 装置 设备 存储 介质
【说明书】:

本申请提供一种图像分析方法、装置、设备及存储介质,该方法通过获取包括至少一个时序图像的待分析图像集;确定至少一个时序图像中目标对象对应的感兴趣区域图像;确定至少一个时序图像对应的感兴趣区域图像中的正常区域;基于至少一个时序图像对应的正常区域的属性数据,得到图像分析结果。本申请不直接利用异常区域的特征数据对时序图像中的异常区域进行分割,而是通过感兴趣区域图像中的正常区域反向确定对应的异常区域,使得所提供的图像分析方法不局限于现有的异常区域的特征数据,可以适用其他阶段的图像分析,提高图像分析结果的可靠性和准确性。

技术领域

本申请涉及图像处理技术领域,尤其涉及一种图像分析方法、装置、设备及存储介质。

背景技术

随着人工智能技术的发展,利用传统机器学习或深度学习来对图像进行分析逐渐成为图像处理领域的研究趋势。

相关技术中,针对医学领域,在利用人工智能技术对医学影像进行分析过程中,往往需要收集足够多的含有病灶的数据,之后基于收集的病灶数据构建对应的病灶处理模型,进而根据构建的病灶处理模型进行分割、检测等图像分析任务。

可见,上述的医学影像分析是需要依赖于初始病灶数据进行的,然而对于一些病种种类较多的部位(例如肺部等),不仅需要花费大量的人力物力去收集全包含大部分病种的数据;而且其只能针对单一病种或少数确定的病种进行图像分析,倘若病灶部位对应的病种发生一些变化、或者病灶的发生源发生变种、或者出现一些新的病种的情况下,原来基于初始病灶数据所构建的病灶处理模型将无法适用,进而将无法有效且准确的进行相应的图像分析任务。举例而言,通常肺部的病种繁多,且肺部疾病对应的病灶是动态变化的,例如针对病毒或细菌感染的肺炎,在不同的阶段其肺部病灶的影像表现各不相同,因此仅通过初始肺部病灶数据所构建的病灶处理模型将无法适用其他阶段的肺部检测分析,如此会降低医学分析结果的可靠性和准确性,甚至会延误患者的病情。

发明内容

本申请提供了一种图像分析方法、装置、设备及存储介质,以解决以上至少一种技术问题。

一方面,本申请提供了一种图像分析方法,包括:

获取待分析图像集,所述待分析图像集包括至少一个时序图像;

确定所述至少一个时序图像中目标对象对应的感兴趣区域图像;所述感兴趣区域图像包括正常区域和异常区域;

确定所述至少一个时序图像对应的感兴趣区域图像中的正常区域;

基于所述至少一个时序图像对应的正常区域的属性数据,确定表征待分析图像集中异常区域的异常信息的图像分析结果。

另一方面,还提供一种图像分析装置,包括:

获取模块,用于获取待分析图像集,所述待分析图像集包括至少一个时序图像;

第一确定模块,用于确定所述至少一个时序图像中目标对象对应的感兴趣区域图像;所述感兴趣区域图像包括正常区域和异常区域;

第二确定模块,用于确定所述至少一个时序图像对应的感兴趣区域图像中的正常区域;

分析模块,用于基于所述至少一个时序图像对应的正常区域的属性数据,确定表征待分析图像集中异常区域的异常信息的图像分析结果。

在一些实施例中,第二确定模块可以包括:

确定单元,用于利用经训练的图像分割模型,对所述至少一个时序图像对应的感兴趣区域图像中正常区域进行分割,得到所述至少一个时序图像对应的感兴趣区域图像中的正常区域;

其中,所述图像分割模型是利用分析样本图像集及对应的目标对象中正常区域的分割结果作为训练集训练得到。

在一些实施例中,在所述时序图像的数量为多个时,分析模块可以包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海联影智能医疗科技有限公司,未经上海联影智能医疗科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010500297.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top