[发明专利]图像分析方法、装置、设备及存储介质在审

专利信息
申请号: 202010500297.3 申请日: 2020-06-04
公开(公告)号: CN111815557A 公开(公告)日: 2020-10-23
发明(设计)人: 姚广;高耀宗;周翔;詹翊强 申请(专利权)人: 上海联影智能医疗科技有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06T7/60;G06T7/11;G06K9/32;G06N3/04;G06N3/08
代理公司: 广州三环专利商标代理有限公司 44202 代理人: 郝传鑫;贾允
地址: 200232 上海市徐*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 分析 方法 装置 设备 存储 介质
【权利要求书】:

1.一种图像分析方法,其特征在于,包括:

获取待分析图像集,所述待分析图像集包括至少一个时序图像;

确定所述至少一个时序图像中目标对象对应的感兴趣区域图像;所述感兴趣区域图像包括正常区域和异常区域;

确定所述至少一个时序图像对应的感兴趣区域图像中的正常区域;

基于所述至少一个时序图像对应的正常区域的属性数据,确定表征待分析图像集中异常区域的异常信息的图像分析结果。

2.根据权利要求1所述的方法,其特征在于,所述确定所述至少一个时序图像对应的感兴趣区域图像中的正常区域包括:

利用经训练的图像分割模型,对所述至少一个时序图像对应的感兴趣区域图像中正常区域进行分割,得到所述至少一个时序图像对应的感兴趣区域图像中的正常区域;

其中,所述图像分割模型是利用分析样本图像集及对应的目标对象中正常区域的分割结果作为训练集训练得到。

3.根据权利要求1或2所述的方法,其特征在于,在所述时序图像的数量为多个时,所述基于所述至少一个时序图像对应的正常区域的属性数据,确定表征待分析图像集中异常区域的异常信息的图像分析结果包括:

基于多个时序图像对应的正常区域的属性数据,确定对应的正常区域的属性变化数据;所述正常区域的属性变化数据表征多个时序图像对应的正常区域在不同时间节点上的区域属性变化情况;

基于所述多个时序图像对应的正常区域的属性变化数据、以及所述感兴趣区域图像的属性数据,确定所述多个时序图像对应的异常区域的属性变化数据;

基于所述多个时序图像对应的异常区域的属性变化数据对待分析图像集进行量化分析,确定表征待分析图像集中异常区域的异常信息的图像分析结果;

其中,所述属性变化数据包括区域体积变化数据和/或区域体积占比变化数据。

4.根据权利要求1或2所述的方法,其特征在于,在所述时序图像的数量为多个时,所述基于所述至少一个时序图像对应的正常区域的属性数据,确定表征待分析图像集中异常区域的异常信息的图像分析结果包括:

分别对第一时序图像对应的感兴趣区域图像以及第二时序图像对应的感兴趣区域图像进行预处理,得到第一时序处理图像和第二时序处理图像;

基于所述第一时序处理图像对应的正常区域的属性数据,确定对应的异常区域的第一属性数据,所述第一属性数据包括第一区域位置数据和第一区域尺寸数据;

基于所述第二时序处理图像对应的正常区域的属性数据,确定对应的异常区域的第二属性数据,所述第二属性数据包括第二区域位置数据和第二区域尺寸数据;

基于所述第一区域位置数据和所述第二区域位置数据,对所述第一时序处理图像中的异常区域与所述第二时序处理图像中的异常区域进行位置匹配,得到区域匹配映射关系;

基于所述区域匹配映射关系、第一区域尺寸数据和第二区域尺寸数据,对所述第一时序处理图像和所述第二时序处理图像进行量化分析,确定表征待分析图像集中异常区域的异常变化信息的图像分析结果;

其中,所述第一时序图像的采集时间节点早于所述第二时序图像的采集时间节点,所述第一时序图像和所述第二时序图像的数量为至少一个。

5.根据权利要求1所述的方法,其特征在于,所述方法还包括:

检测所述至少一个时序图像对应的感兴趣区域图像中各区域的像素值;

基于各区域的像素值与预设像素阈值的比较结果,确定所述至少一个时序图像对应的感兴趣区域图像中的异常区域;

确定所述至少一个时序图像对应的感兴趣区域图像中异常区域的区域属性,所述区域属性包括区域大小和/或区域数量;

根据所述至少一个时序图像对应的感兴趣区域图像中异常区域的区域属性与预设属性阈值的比较结果,确定每个时序图像对应的标记类型;

基于确定的所述至少一个时序图像对应的标记类型,分别对所述至少一个时序图像进行标记。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海联影智能医疗科技有限公司,未经上海联影智能医疗科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010500297.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top