[实用新型]一种基于无人机遥感和深度学习的油气管道全智能巡检系统有效

专利信息
申请号: 201920129701.3 申请日: 2019-01-25
公开(公告)号: CN210511074U 公开(公告)日: 2020-05-12
发明(设计)人: 周纪;孟令宣;张继荣;陆珍雨 申请(专利权)人: 电子科技大学
主分类号: F17D5/02 分类号: F17D5/02;B64C39/02;G05D1/10;G01S19/14;H04N7/18
代理公司: 电子科技大学专利中心 51203 代理人: 周刘英
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 无人机 遥感 深度 学习 油气 管道 智能 巡检 系统
【说明书】:

本实用新型公开了一种基于无人机遥感和深度学习的油气管道全智能巡检系统,属于检测技术领域。本实用新型采用无人机搭载高分辨率可见光相机从空中获得影像数据,用户可用图传设备在地面上实时看到处理后的影像;再利用其预置的深度神经网络识别器自动发现危害油气管道安全的行为;一旦发现危害管道安全的行为,则可以保存相关数据,并通过4G网络向监管部门传输位置数据、时间数据和影像数据,且触发警报,极大地减少了人工分析视频图像的工作量,有效避免了漏检现象,提高巡检可靠性,保证巡检质量。本实用新型的油气管道全智能巡检系统应用简单,可靠高效,能显著地降低巡检成本,提高巡检效率和质量。

技术领域

本实用新型属于检测领域,具体涉及一种基于无人机遥感和深度学习的油气管道全智能巡检系统。

背景技术

油气管道作为能源运输的重要工具,一旦发生泄漏或者爆炸事故,将严重威胁人民群众的生命和财产安全,因此管道的安全巡护与管理非常重要。国家油气管道保护法规定:在管道线路中心线两侧各五米地域范围内,禁止种植深根植物、挖掘施工、违章修建等行为。然而,上述危害油气管道安全的行为却时有发生,甚至造成不可挽回的损失。这反应了油气管道巡检方案的不足。

目前,常规的油气管道巡护方式,一般是巡护人员徒步观察,检查线路情况并作记录。该巡检方式工作量大,效率低,耗时长、主管因素多,人工成本高,而且受制于地形等。

利用靠近管道布设的光纤传感器,可以通过光信号的变化对管道周边的震动进行分析预警。但目前光纤和大部分电子感应装置普遍存在误差高、作用距离短,获取信息有限等弊端。

随着无人机的发展成熟,利用无人机可以高效、快捷、可靠、低廉的完成巡检任务。目前,现有无人机巡检方案通常是使用无人机拍摄管道周边图像,然后监管人员对图像逐帧的人工观察和判断。该方式需要人工处理海量的视频图像,耗时长,工作效率低,实时性差,且容易产生漏判现象。

实用新型内容

本实用新型的发明目的在于:针对上述存在的问题,提供一种基于无人机遥感和深度学习的油气管道全智能巡检系统。从而实现在大范围内实时准确的获取、识别、判断油气管道周围的图像,自动发现危害油气管道安全的行为;当发现危害油气管道安全的行为时,本系统能迅速通知监管部门,触发警报,极大减少巡检的人工和经济成本等,提高管道安全,进而实现油气管道的全智能巡检,降低巡检成本,提高巡检效率和质量。

本实用新型的基于无人机遥感和深度学习的油气管道全智能巡检系统,包括无人机端、无人机地面端和报警显示终端;

其中,无人机端包括无人机、挂载板、云台、图像采集装置和巡检主控模块;

所述无人机的内部包括GPS模块、图传模块、串口和供电口;

所述挂载板用于将云台和巡检主控模块固定在无人机上;

所述云台与图像采集装置相连,用于稳定图像采集装置,以及为图像采集装置减震;

所述图像采集装置,通常采用高分辨率可见光摄像装置,用于实时采集无人机在执行巡检任务时从空中拍摄的地面图像,并将采集的图像数据实时传输给巡检主控模块;

所述巡检主控模块与无人机相连,并通过无人机的供电口实现供电;同时还与图像采集装置相连;巡检主控模块基于其内置的深度神经网络识别器,对接收的图像数据进行危害油气管道安全的行为的目标识别处理,若识别出当前图像数据具有危害油气管道安全的行为的目标对象,则通过连接的串口从无人机的GPS模块获取GPS时间数据和GPS位置数据,连同当前图像数据的危害油气管道安全的行为的目标对象的识别结果作为当前巡检信息,并将当前巡检信息通过无人机的图传模块发送至无人机地面端;以及通过巡检主控模块内置的网络传输模块基于公网传输至远端的报警显示终端;

所述无人机地面端,用于基于巡检任务设置无人机的飞行任务,以及控制无人机的飞行状态,所述飞行任务包括但不限于手动飞行、沿航线自主飞行等;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201920129701.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top