[发明专利]模型更新系统、模型更新方法及相关设备在审
申请号: | 201911209129.2 | 申请日: | 2019-11-30 |
公开(公告)号: | CN112884159A | 公开(公告)日: | 2021-06-01 |
发明(设计)人: | 常庆龙;张彦芳;孙旭东;薛莉;张亮 | 申请(专利权)人: | 华为技术有限公司 |
主分类号: | G06N20/00 | 分类号: | G06N20/00 |
代理公司: | 深圳市深佳知识产权代理事务所(普通合伙) 44285 | 代理人: | 吴磊 |
地址: | 518129 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 模型 更新 系统 方法 相关 设备 | ||
本申请实施例公开了一种模型更新系统,可以应用于网络控制领域。本申请实施例系统包括:局点分析设备和第一分析设备;局点分析设备,用于接收第一分析设备发送的第一模型,利用第一训练样本训练第一模型,获得第二模型,第一训练样本包括局点分析设备所对应的局点网络的网络设备的第一特征数据,获取第一模型和第二模型的差异数据,并向第一分析设备发送差异数据;第一分析设备,用于向局点分析设备发送第一模型,接收局点分析设备发送的差异数据,并根据差异数据更新第一模型,获得第三模型。本申请实施例的第一分析设备可以在更新第一模型的基础上,提高私密性。
技术领域
本申请实施例涉及网络控制领域,尤其涉及模型更新系统、模型更新方法及相关设备。
背景技术
随着人工智能(artificial intelligence,AI)的快速发展,AI模型凭借着灵活、智能等特点在网络中被广泛使用。
网络设备配置AI模型后,网络设备将网络设备上的特征数据作为AI模型的输入,网络设备上的特征数据由网络设备的流量场景决定,不同的流量场景会产生不同的特征数据,在网络设备向AI模型输入特征数据后,网络设备可以根据AI模型获得输出结果。网络设备可以根据该输出结果做出相应的决策,或者将该输出结果发送给其它网络设备,帮助其它网络设备利用该输出结果做出相应的决策。
由于AI模型是根据训练数据训练得到的,当网络设备的场景与训练数据的采集场景不相同,或者网络设备的场景与训练数据的采集场景本来相同,但是由于网络设备的场景发生变化,导致网络设备的场景与训练数据的采集场景不相同,AI模型的性能可能会下降,因此如何保持AI模型的性能,是一个急需解决的问题。
发明内容
本申请实施例提供了一种模型更新系统、模型更新方法及相关设备,可以在更新第一模型的基础上,提高私密性。
本申请实施例第一方面提供了一种模型更新系统,包括:
局点分析设备和第一分析设备;第一分析设备可以获取第一模型,在获得第一模型后,第一分析设备可以向局点分析设备发送该第一模型;局点分析设备可以获取到网络设备发送的第一特征数据;在接收到第一模型后,局点分析设备可以利用第一训练样本训练该第一模型,获得第二模型,该第一训练样本包括第一特征数据;在获得第二模型后,局点分析设备可以获取第一模型和第二模型的差异数据,局点分析设备获得差异数据后,局点分析设备向第一分析设备发送该差异数据,第一分析设备可以接收到该差异数据,并根据该差异数据更新第一模型,获得第三模型。
本申请实施例中,局点分析设备可以利用第一训练样本训练第一模型,获得第二模型,局点分析设备可以获取第一模型和第二模型的差异数据,并向第一分析设备发送该差异数据,用于请求第一分析设备根据差异数据更新第一模型,其中,差异数据由局点分析设备根据第一模型和第二模型得到,第二模型由局点分析设备利用第一训练样本训练第一模型得到,第一训练样本包括网络设备的第一特征数据,且差异数据的私密性高于第一特征数据,因此在可以让第一分析设备为了保持模型性能而更新第一模型的基础上,提高了私密性。
在一种可能的设计中,在本申请实施例的第一方面的第一种实施方式中,局点分析设备还用于确定第一模型是否发生劣化,只有在局点分析设备确定第一模型发生劣化时,局点分析设备才利用第一训练样本训练第一模型,获得第二模型。
本申请实施例中,局点分析设备只有在确定第一模型发生劣化时,局点分析设备才会利用第一训练样本训练第一模型,获得第二模型,其中,当局点分析设备确定第一模型发生劣化时,则表明第一模型的性能下降,因此,局点分析设备只有在第一模型的性能下降时,才会利用第一训练样本训练第一模型,因此避免了第一模型的性能没有下降时,局点分析设备利用第一训练样本训练第一模型的情况,节省了局点分析设备的网络资源。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华为技术有限公司,未经华为技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911209129.2/2.html,转载请声明来源钻瓜专利网。