[发明专利]碳化硅纤维及其制备方法和应用有效
申请号: | 201910082135.X | 申请日: | 2019-01-28 |
公开(公告)号: | CN109761610B | 公开(公告)日: | 2021-12-24 |
发明(设计)人: | 吴宝林;侯振华 | 申请(专利权)人: | 江西嘉捷信达新材料科技有限公司 |
主分类号: | C04B35/565 | 分类号: | C04B35/565;C04B35/622;C04B35/653;D01F1/10;D01F9/08 |
代理公司: | 北京酷爱智慧知识产权代理有限公司 11514 | 代理人: | 高江玲 |
地址: | 330000 江西省南昌市南昌高*** | 国省代码: | 江西;36 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 碳化硅 纤维 及其 制备 方法 应用 | ||
本发明涉及碳化硅纤维及其制备方法和应用,所述方法包括如下步骤:负载Al纳米颗粒金属有机骨架材料NH2‑UIO‑66(Hf)掺杂的碳化硅先驱体的制备、负载Al纳米颗粒金属有机骨架材料NH2‑UIO‑66(Hf)掺杂的碳化硅纤维先驱体的熔融纺丝、负载Al纳米颗粒金属有机骨架材料NH2‑UIO‑66(Hf)掺杂的碳化硅纤维的烧结。本发明的碳化硅纤维的制备方法,在先驱体中引入铪、铝和氮元素,在烧结过程中再次引入N元素,制备的碳化硅纤维中含有铪、铝,力学性能好,耐高温性能极佳。
技术领域
本发明属于材料加工制备技术领域,具体涉及碳化硅纤维及其制备方法和应用。
背景技术
碳化硅(SiC)纤维是一种高强高模、抗氧化、耐磨、耐腐蚀、比重小等优良性的陶瓷纤维。世界各国先后对制备连续SiC纤维开展了广泛的研究,在航空、机械、化工、航天、武器等高尖端领域具有极为广泛的应用前景。目前,SiC纤维的强度可达3.0±0.4GPa,模量可达200±20GPa,使用温度可达1000℃。由于其室温强度较低及韧性不足而使其应用受到一定限制,为了提高碳化硅材料的强度和韧性,SiC纤维通过不同的界面处理,可适用于不同的聚合物基、金属基、陶瓷基复合材料增强材料的强度和韧性。
目前,制备连续SiC纤维的主要方法有4种:先驱体转化法(Polymer-Derived,PD)、化学气相沉积法(ChemicalVaporDeposition,CVD)、活性碳纤维转化法和超微细粉高温烧结法,其中,只有先驱体转化法(PD)和化学气相沉积法(CVD)实现了商品化制备。活性碳纤维转化法,所得纤维的强度和模量均不高;超细微粉烧结法制备的纤维大量富碳、丝径较粗、强度较低,抗氧化性较差。CVD法是以连续的碳纤维和甲基硅烷类化合物为原料,在氮气流下于灼热的芯丝表面上反应,裂解为SiC并沉积在芯丝上而制得。CVD法制备的连续SiC纤维直径较粗(100μm),主要以单丝形式增强金属基材料。PD法是目前制备细直径连续SiC纤维的主要方法,已实现工业化生产,其工艺路线包括先驱体的合成、先驱体的熔融纺丝、将可溶可熔的原纤维进行不熔化处理及不熔化纤维的高温烧成等四大工序。先驱体法具有纤维直径细、可制备不同截面形状、成本低、极适合工业化生产等特点,并且弥补了CVD法不易编织、难于制造复杂形状构件的不足。但是先驱体转化法在不熔化处理过程中,若采用经济的空气交联法,容易引入大量氧元素。SiC纤维中大量氧以SiCxOy的无定型态存在,高温下极易发生热分解,使得SiC纤维高温下性能急剧下降。改进纤维不熔化工艺,降低SiC纤维中的氧含量,对提高SiC纤维高温性能具有重要意义。
金属有机骨架材料(MOFs)是近十年来发展迅速的一种配位聚合物,具有三维的孔结构,一般以金属离子为连接点,有机配体位支撑构成空间3D延伸,系沸石和碳纳米管之外的又一类重要的新型多孔材料,在催化,储能和分离中都有广泛应用,目前,大多数研究人员致力于氢气储存的实验和理论研究。金属阳离子在MOFs骨架中的作用一方面是作为结点提供骨架的中枢,另一方面是在中枢中形成分支,从而增强MOFs的物理性质(如多孔性和手性)。这类材料的比表面积远大于相似孔道的分子筛,而且能够在去除孔道中的溶剂分子后仍然保持骨架的完整性。因此,MOFs具有许多潜在的特殊性能,在新型功能材料如选择性催化、分子识别、可逆性主客体分子(离子)交换、超高纯度分离、生物传导材料、光电材料、磁性材料和芯片等新材料开发中显示出诱人的应用前景,给多孔材料科学带来了新的曙光。
虽然SiC纤维都已被广泛研究,但其高温性能、热稳定性和编织性能等都有些欠缺,因此亟待研究一种能够优化上述性能的材料。
发明内容
本发明的一个目的在于提出一种碳化硅纤维的制备方法。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江西嘉捷信达新材料科技有限公司,未经江西嘉捷信达新材料科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910082135.X/2.html,转载请声明来源钻瓜专利网。