[发明专利]一种基于数据驱动的工业生产过程故障诊断方法有效
申请号: | 201811487380.0 | 申请日: | 2018-12-06 |
公开(公告)号: | CN109657945B | 公开(公告)日: | 2021-01-05 |
发明(设计)人: | 彭刚;成栋梁;武登泽 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06Q10/06 | 分类号: | G06Q10/06;G06K9/62 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李智;曹葆青 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 数据 驱动 工业 生产过程 故障诊断 方法 | ||
本发明公开了一种基于数据驱动的工业生产过程故障诊断方法,包括:计算平均偏差和方差,对工业生产过程中的多维数据进行特征提取,得到特征数据,构建原始输入样本集;利用原始输入样本集,使用训练好的随机森林模型,对待诊断工业生产过程进行故障诊断,得到诊断结果;根据诊断结果是否有故障,以及故障类型,对待诊断工业生产过程故障产生的原因进行分析和解决。本发明采用粒子群算法,同时优化随机森林模型的2个关键参数,为随机森林参数的优化提供了一种可行、高效的方法,并提高了利用随机森林算法进行工业生产过程故障诊断的准确性。
技术领域
本发明属于工业生产过程诊断领域,更具体地,涉及一种基于数据驱动的工业生产过程故障诊断方法。
背景技术
工业生产过程系统越来越复杂,各个流程工序相互关联、相互影响,一旦其中任何一个过程出现故障,会导致系统功能失效,影响正常生产,造成企业重大经济损失,严重时还会造成人员安全事故,给国家和人民带来损失。因此,从安全生产和企业经济效益的角度来说,通过对工业生产过程数据的分析进行故障诊断是十分必要的。
现有的故障诊断方法可以分为基于机理模型的方法、基于知识的方法、基于信号处理的方法和基于人工智能的方法。基于机理模型的方法具有良好诊断效果的前提是建立精确的模型,随着生产制造系统的集成化与复杂化,构建这些系统的精确机理模型是很困难的,基于机理模型的方法在实际应用中很难起到良好的诊断效果。基于知识的方法是将故障诊断相关的专家经验知识进行处理,模拟人的决策方式,实现复杂系统的智能化诊断。这种方法构建的模型大部分不具有自我学习能力,不能满足需求。基于信号处理的方法是对信号进行处理和特征提取来进行故障诊断,但是没有固定的特征提取方案,不同类型数据的特征提取方式不近相同。近年来,基于人工智能的方法逐渐兴起,提高了诊断效率和识别率。但在使用人工智能方法对工业生产过程数据进行故障诊断时,人工智能算法的模型和模型参数往往需要优化,如果优化效果不好,则会降低故障诊断的准确率,诊断结果与实际偏差较大。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于数据驱动的工业生产过程故障诊断方法,由此解决现有的故障诊断方法诊断结果偏差大,以及诊断算法的参数优化效率低的技术问题。
为实现上述目的,本发明提供了一种基于数据驱动的工业生产过程故障诊断方法,包括:
(1)计算工业生产过程中的多维数据的平均偏差和方差,以对工业生产过程中的多维数据进行特征提取,得到特征数据,由所述特征数据构建原始输入样本集;
(2)利用原始输入样本集,使用训练好的随机森林模型,对待诊断工业生产过程进行故障诊断,得到诊断结果;
(3)根据诊断结果是否有故障,以及故障类型,对待诊断工业生产过程故障产生的原因进行分析和解决。
优选地,步骤(1)包括:
选取工业生产过程中的变量Ak从t时刻开始的连续h个值,计算这h个值与该变量Ak的偏差,然后将这些偏差的平均值作为特征值et,k,另外再计算这h个值与该变量Ak的方差,并将这些方差的平均值作为另一个特征值由此,对于工业生产过程中的r个变量,能够构造出包含2*r个特征值的特征向量:将所述特征向量经归一化处理后,得到特征数据,构建原始输入样本集S。
优选地,所述步骤(2)的训练好的随机森林RF模型,训练过程包括:
(2.1)计算经过标记的工业生产过程中的多维数据的平均偏差和方差,以对工业生产过程中的多维数据进行特征提取,得到特征数据,由所述特征数据构建原始输入样本集;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811487380.0/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置