[发明专利]一种基于数据驱动的工业生产过程故障诊断方法有效
申请号: | 201811487380.0 | 申请日: | 2018-12-06 |
公开(公告)号: | CN109657945B | 公开(公告)日: | 2021-01-05 |
发明(设计)人: | 彭刚;成栋梁;武登泽 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06Q10/06 | 分类号: | G06Q10/06;G06K9/62 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李智;曹葆青 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 数据 驱动 工业 生产过程 故障诊断 方法 | ||
1.一种基于数据驱动的工业生产过程故障诊断方法,其特征在于,包括:
(1)计算工业生产过程中的多维数据的平均偏差和方差,以对工业生产过程中的多维数据进行特征提取,得到特征数据,由所述特征数据构建原始输入样本集;
(2)利用原始输入样本集,使用训练好的随机森林模型,对待诊断工业生产过程进行故障诊断,得到诊断结果;
(3)根据诊断结果是否有故障,以及故障类型,对待诊断工业生产过程故障产生的原因进行分析和解决;
其中,步骤(1)包括:
选取工业生产过程中的变量Ak从t时刻开始的连续h个值,计算这h个值与正常状态时的该变量Ak均值的偏差,然后将这些偏差的平均值作为特征值et,k,另外再计算这h个值的方差的平均值作为另一个特征值由此,对于工业生产过程中的r个变量,能够构造出包含2*r个特征值的特征向量:计算所述特征向量中每个变量对应的特征值et,k与正常状态时该变量的均值之间的比值以及每个变量对应的特征值与正常状态时该变量的方差之间的比值,得到新的特征向量作为特征数据,由所述特征数据构建原始输入样本集S;
所述步骤(2)的训练好的随机森林RF模型,训练过程包括:
(2.1)计算经过标记的工业生产过程中的多维数据的平均偏差和方差,以对工业生产过程中的多维数据进行特征提取,得到特征数据,由所述特征数据构建原始输入样本集;
(2.2)采用粒子群算法优化所述随机森林模型的参数,将利用所述原始输入样本集得到的分类正确率最高的随机森林模型参数作为所述随机森林模型的最优参数组合,得到训练好的随机森林模型,以通过训练好的RF模型对待诊断工业生产过程进行故障诊断,其中,所述随机森林模型中的参数包括决策树棵数n和特征子集大小κ。
2.根据权利要求1所述的方法,其特征在于,标记的工业生产过程中的多维数据是指已知生产过程状态是正常状态的数据还是故障状态的数据,以及是属于哪一种故障状态。
3.根据权利要求1所述的方法,其特征在于,步骤(2.2)包括:
(2.2.1)初始化参数,随机为粒子种群中的每个粒子指定初始位置和速度参数,预设最大迭代次数、粒子位置的限定范围、粒子速度的限定范围及粒子种群规模,其中,以空间向量(n,κ)作为所述粒子种群中的粒子,空间向量(n,κ)是由RF的2个关键参数:决策树棵树n和特征集大小κ组成,粒子i的位置为(xi,n,xi,κ),xi,n代表随机森林决策树棵树,xi,κ代表随机森林特征子集大小,粒子i的速度为(vi,n,vi,κ);
(2.2.2)利用Bootstrap抽样方法,对步骤(2.1)所述原始输入样本集进行m次有放回的抽取操作,得到与原始输入样本集具有相同样本数m的训练输入样本集,重复xi,n次Bootstrap抽取操作,得到xi,n个训练输入样本集,用得到的xi,n个训练输入样本集依次训练xi,n个决策树,并在决策树节点分裂时,随机从特征集M中选择大小为xi,κ的特征子集,根据计算的xi,κ种分裂情况下的信息增益、信息增益率或者Gini指标,选择最佳分裂特征对应的随机森林结构,得到当前粒子(xi,n,xi,κ)对应的临时随机森林模型,其中,特征集M表示原始输入样本集中的样本属性的集合,属性是指2*r个平均偏差和方差所代表的含义;
(2.2.3)利用原始输入样本集,使用当前粒子(xi,n,xi,κ)对应的临时随机森林模型,进行工业生产过程故障分类,与经过标记的工业生产过程中的多维数据对应的故障类别对比,计算粒子对于经过标记的数据样本的分类正确率,以分类正确率作为当前粒子的适应度值;
(2.2.4)更新各粒子的速度和位置,若粒子位置及速度超出了各自的限定范围,则取边界值,限制粒子速度和位置,对于更新后的每个粒子,若该粒子当前位置对应的适应度高于其历史最佳位置对应的适应度,则将当前位置作为该粒子的最佳位置;
(2.2.5)更新种群位置,将每个粒子的当前最佳位置对应的适应度与种群历史最佳位置对应的适应度进行比较,若某个粒子当前最佳位置对应的适应度值更高,则将该粒子当前最佳位置作为种群最佳位置;
(2.2.6)若迭代次数小于预设最大迭代次数,且种群的最佳适应度值小于预设阈值,则返回步骤(2.2.2)继续迭代,否则结束迭代,将得到的种群最佳位置作为随机森林模型的决策树棵树和特征子集大小的最优组合。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811487380.0/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置