[发明专利]样本训练方法、分类方法、识别方法、装置、介质及系统有效
申请号: | 201810931064.1 | 申请日: | 2018-08-15 |
公开(公告)号: | CN109214431B | 公开(公告)日: | 2022-02-01 |
发明(设计)人: | 杜文静;王磊;李慧慧 | 申请(专利权)人: | 深圳先进技术研究院 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/00 |
代理公司: | 深圳智趣知识产权代理事务所(普通合伙) 44486 | 代理人: | 王策 |
地址: | 518055 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 样本 训练 方法 分类 识别 装置 介质 系统 | ||
1.一种样本训练方法,其特征在于,所述方法包括下述步骤:
获得由属于第一类别的待训练样本构成的第一样本集合,所述第一样本集合包含:由相较于属于第二类别的参考样本、特征变化不具有显著差异的待训练样本构成的第二样本集合,以及,由相较于所述参考样本的特征变化、与所述第二样本集合中待训练样本相较于所述参考样本的特征变化之间具有显著差异的待训练样本构成的第三样本集合;
对所述第一样本集合中待训练样本的特征、所述第三样本集合中待训练样本的特征进行机器学习分类方法的训练,分别对应得到第一分类器、第二分类器;
其中,所述第一样本集合中的待训练样本与所述第三样本集合中的待训练样本具有相同数量的指标参数,样本特征之间的差异可以通过计算所得距离进行指示。
2.一种分类方法,其特征在于,所述分类方法包括下述步骤:
将待测样本的特征输入第一分类器进行第一次判断,若所得第一判断结果指示所述待测样本属于第一类别,则以所述第一判断结果作为分类结果,
若所述第一判断结果指示所述待测样本不属于所述第一类别,则将所述待测样本的特征输入第二分类器进行第二次判断,若所得第二判断结果指示所述待测样本属于所述第一类别,则以所述第二判断结果作为分类结果,
其中,所述第一分类器对应的第一样本集合中的已分类样本以及所述第二分类器对应的第三样本集合中的已分类样本均属于第一类别,所述第一样本集合包含:由相较于属于第二类别的参考样本、特征变化不具有显著差异的已分类样本构成的第二样本集合,以及,由相较于所述参考样本的特征变化、与所述第二样本集合中已分类样本相较于所述参考样本的特征变化之间具有显著差异的已分类样本构成的所述第三样本集合。
3.一种下背痛症状识别方法,其特征在于,所述下背痛症状识别方法包括下述步骤:
获得待测者的腰部局部肌肉肌电信号;对所述腰部局部肌肉肌电信号进行预处理,得到待测样本;
对所述待测样本进行处理,得到所述待测样本的特征;
将所述待测样本的特征输入第一分类器进行第一次判断,若所得第一判断结果指示所述待测样本属于第一类别,则以所述第一判断结果作为分类结果,若所述第一判断结果指示所述待测样本不属于所述第一类别,则将所述待测样本的特征输入第二分类器进行第二次判断,若所得第二判断结果指示所述待测样本属于所述第一类别,则以所述第二判断结果作为分类结果,其中,所述第一分类器对应的第一样本集合中的已分类样本以及所述第二分类器对应的第三样本集合中的已分类样本均属于第一类别,所述第一样本集合包含:由相较于属于第二类别的参考样本、特征变化不具有显著差异的已分类样本构成的第二样本集合,以及,由相较于所述参考样本的特征变化、与所述第二样本集合中已分类样本相较所述参考样本的特征变化之间具有显著差异的已分类样本构成的所述第三样本集合,所述第一类别为下背痛症状类别,所述第二类别为无下背痛症状类别。
4.一种计算装置,其特征在于,所述计算装置包括:存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至3任一项所述方法中的步骤。
5.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至3任一项所述方法中的步骤。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳先进技术研究院,未经深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810931064.1/1.html,转载请声明来源钻瓜专利网。