[发明专利]基于分形理论与改进的最小二乘支持向量机潮汐流速预测方法有效
申请号: | 201810845235.9 | 申请日: | 2018-07-27 |
公开(公告)号: | CN108694482B | 公开(公告)日: | 2022-01-14 |
发明(设计)人: | 张安安;孙杨帆;李茜;何嘉辉;黄璜;冯雅婷 | 申请(专利权)人: | 西南石油大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06 |
代理公司: | 北京慕达星云知识产权代理事务所(特殊普通合伙) 11465 | 代理人: | 李冉 |
地址: | 610500 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 理论 改进 最小 支持 向量 潮汐 流速 预测 方法 | ||
本发明的目的是针对现有的潮汐流流速研究的不足,提出的一种基于分形理论与改进的最小二乘支持向量机的潮汐流速预测方法,其特点是针对潮汐能的间歇性,不可控性造成发电机输出功率的随机性的主要特点,潮汐流速时间序列是具有分形特性的非线性体系,以历史数据为研究对象,基于分形理论,使用R/S分析法计算时间序列的Hurst指数和V统计量,评价潮汐流速的稳定性和自相关性,并基于改进的蜻蜓算法优化的最小二乘支持向量机的参数,建立潮汐流预测模型,对潮汐流速进行预测。本发明能够有效的判断潮汐流速的自相关性,为潮汐流速的预测提供理论依据,通过改进的预测模型有效的提高了预测的精度以及运算效率。
技术领域
本发明涉及一种基于分形理论和蜻蜓算法改进的最小二乘支持向量机的海洋平台短期潮汐流速预测方法,属于潮汐能流速预测领域。
背景技术
潮汐能是一种可再生的清洁能源,近些年在我国得到了大规模的发展,但是,可再生能源一般具有的间歇性,不可控性以及拓扑结构多样化等特点,潮汐能也同样存在。由于潮汐流的潮涨潮落而引发的潮汐流速的时大时小,会使对发电机功率输出存在随机性。准确的潮汐能功率预测可以为电力调度,电力系统的可靠性评估提供重要的保证,有效的减轻潮汐能对电网的影响。由于潮汐能功率与潮汐流速有直接确定的关系,功率预测可以在潮汐流速预测的基础上实现,所以准确的潮汐流速预测显得十分重要。
现有的谐波分析法和SHOM(Service hydrographique et océanographique dela marine)预测潮汐流速,但是这两种方法只考虑了潮流速度的规律性,无法模拟每一个时间点潮流速度的随机性。H.Chen,N.E.H.and M.Machmoum,Marinetidal current systems:State of the art,2012IEEE International Symposium onIndustrial Electronics,Hangzhou,2012,pp.1431-1437;B.L.Polagye,J.Epler andJ.Thomson,Limits to the predictability of tidal current energy,OCEANS2010MTS/IEEE SEATTLE,Seattle,WA,2010,pp.1-9。使用统计学的方法捕捉潮流速度的概率特征,但是这种方法不能直接用于生成具有规律性和随机性的潮流速度时间序列。Mingjun Liu,Wenyuan Li,R.Billinton,C.Wang and Juan Yu,Probabilistic modelingof tidal power generation,2015IEEE PowerEnergy Society General Meeting,Denver,CO,2015,pp.1-5。最小二乘支持向量机(least square support vector machine,LSSVM)是在统计学理论上发展起来的一种新型的学习方法,能够生成具有规律性和随机性的潮流速度时间序列,能有效的避免陷入局部最优,而且具有较强的泛化能力。在LSSVM预测建模过程中,影响预测模型精确度的参数主要是正则化参数和核函数宽度,但是这两个参数一般采用试凑法选取,造成预测麻烦且误差较大,因此有学者提出使用粒子群算法,遗传算法,蚁群算法等优化最小二乘支持向量机,但是上述的智能算法会出现建模速度慢,容易陷入局部最优,预测效率低等问题。
发明内容
为了解决上述存在的问题,本发明提出了有一种基于分形理论与改进的蜻蜓算法(Improvement Dragonfly Algorithm,IDA)优化最小二乘支持向量机进行潮汐流速的预测模型,该方法首先基于分形理论,使用R/S分析法计算了时间序列的Hurst指数和V统计量,评价了潮汐流速的稳定性,判断了潮汐流速的自相似性与潮汐流速的非循环周期,然后使用改进的蜻蜓算法优化最小二乘支持向量机的正则化参数和核函数宽度两个参数,其全局搜索能力强,预测精度高,计算效率快。最后通过改进后的预测模型进行潮汐流速的预测,实验结果表明,该方法的预测精度更高。
本发明所提出的潮汐流速预测方法的具体步骤如下:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南石油大学,未经西南石油大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810845235.9/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理