[发明专利]一种化工时变工业过程混合控制方法有效

专利信息
申请号: 201810760549.9 申请日: 2018-07-11
公开(公告)号: CN108873699B 公开(公告)日: 2021-02-09
发明(设计)人: 胡晓敏;李容轩;邹洪波 申请(专利权)人: 杭州电子科技大学
主分类号: G05B13/04 分类号: G05B13/04
代理公司: 杭州浙科专利事务所(普通合伙) 33213 代理人: 吴秉中
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 化工 工业 过程 混合 控制 方法
【说明书】:

发明公开了一种化工时变批次过程混合控制方法,包括如下步骤:步骤1、建立批次过程时变状态空间模型;步骤2、设计被控对象的批次过程控制器。该方法首先建立批次过程模型,通过引入状态误差和输出误差,将上述模型转化为等效的随机系统模型,根据不同故障发生的概率,将常规的迭代学习控制律设计转化为更灵活的更新律设计。不同于传统的控制策略,本发明所提出的混合控制策略考虑到了执行器出现不同故障的概率,系统全面地分析、处理各类故障,故障处理的灵活性、快速性更好。

技术领域

本发明属于自动化工业过程控制领域,涉及到一种化工时变批次过程混合控制方法。

背景技术

在工业生产过程中,批次处理过程非常普遍,同时,在复杂的工业生产环境下,长时间运行的生产设备出现故障的情况很普遍,存在的故障,不仅会影响生产效率和产品质量,还会造成财产损失和人员伤亡。综合考虑安全生产和经济效益,当系统出现故障时,系统仍要保持一定的稳定性和可控性。因此,有必要对故障处理方法进行研究。

发明内容

本发明目的是为了更好地解决化工批次过程中执行器出现的故障,提出了一种化工时变批次过程混合控制方法。该方法首先建立批次过程模型,通过引入状态误差和输出误差,将上述模型转化为等效的随机系统模型,根据不同故障发生的概率,将常规的迭代学习控制律设计转化为更灵活的更新律设计。不同于传统的控制策略,本发明所提出的混合控制策略考虑到了执行器出现不同故障的概率,系统全面地分析、处理各类故障,故障处理的灵活性、快速性更好。

本发明的技术方案是通过模型建立、控制器设计、预测机理、优化等手段,设计了一种化工时变批次过程混合控制方法,利用该方法可以提高系统的安全性和可靠性。其具体技术方案如下:

本发明方法的步骤包括:

步骤1、建立批次过程时变状态空间模型,具体方法是:

1-1.建立一个批次过程系统模型,其形式如下:

其中k和t分别表示批次和批次运行时刻,x(t+1,k)、x(t,k)、x(t-d(t),k)分别是k批次t+1时刻、t时刻、t-d(t)时刻的系统状态,d(t)是系统t时刻的状态延迟,dm≤d(t)≤dM,dm、dM分别是状态延迟的下限和上限,y(t,k)∈Rl是k批次t时刻的系统输出,维数为Rl,u(t,k)∈Rm是k批次t时刻的系统输入,维数为Rm,l,m分别是系统输出和输入的阶次,σ(t,k)表示与批次和时刻有关的切换信号,Aσ(t,k),Adσ(t,k),Bσ(t,k),Cσ(t,k)分别表示带有切换信号的适当维度的常数矩阵,ωσ(t,k)(t,k)是k批次t时刻的外部扰动,x(0,k)是k批次系统的初始状态,其初始值设置为x0,k

1-2.让批次过程输出跟踪给定的期望轨迹,其定义如下:

e(t,k)A yr(t)-y(t,k)

其中yr(t)是t时刻系统输出期望轨迹,e(t,k)是k批次t时刻的系统输出误差,A表示‘定义为’。

1-3.批次过程系统故障的发生概率的定义如下:

0≤P{γ(t+1,k)=1|γ(t,k)=0}=α≤1,0≤P{γ(t+1,k)=0|γ(t,k)=0}=1-α≤1

0≤P{γ(t+1,k)=1|γ(t,k)=1}=1-χ≤1,0≤P{γ(t+1,k)=0|γ(t,k)=1}=χ≤1

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810760549.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top