[发明专利]一种化工时变工业过程混合控制方法有效
申请号: | 201810760549.9 | 申请日: | 2018-07-11 |
公开(公告)号: | CN108873699B | 公开(公告)日: | 2021-02-09 |
发明(设计)人: | 胡晓敏;李容轩;邹洪波 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 杭州浙科专利事务所(普通合伙) 33213 | 代理人: | 吴秉中 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 化工 工业 过程 混合 控制 方法 | ||
1.一种化工时变批次过程混合控制方法,包括如下步骤:
步骤1、建立批次过程时变状态空间模型;
步骤2、设计被控对象的批次过程控制器;
步骤1具体如下:
1-1.建立一个批次过程系统模型,其形式如下:
其中k和t分别表示批次和批次运行时刻,x(t+1,k)、x(t,k)、x(t-d(t),k)分别是k批次t+1时刻、t时刻、t-d(t)时刻的系统状态,d(t)是系统t时刻的状态延迟,dm≤d(t)≤dM,dm、dM分别是状态延迟的下限和上限,y(t,k)∈Rl是k批次t时刻的系统输出,维数为Rl,u(t,k)∈Rm是k批次t时刻的系统输入,维数为Rm,l,m分别是系统输出和输入的阶次,σ(t,k)表示与批次和时刻有关的切换信号,Aσ(t,k),Adσ(t,k),Bσ(t,k),Cσ(t,k)分别表示带有切换信号的适当维度的常数矩阵,ωσ(t,k)(t,k)是k批次t时刻的外部扰动,x(0,k)是k批次系统的初始状态,其初始值设置为x0,k;
1-2.让批次过程输出跟踪给定的期望轨迹,其定义如下:
其中yr(t)是t时刻系统输出期望轨迹,e(t,k)是k批次t时刻的系统输出误差,表示‘定义为’;
1-3.批次过程系统故障的发生概率的定义如下:
0≤P{γ(t+1,k)=1|γ(t,k)=0}=α≤1,0≤P{γ(t+1,k)=0|γ(t,k)=0}=1-α≤1
0≤P{γ(t+1,k)=1|γ(t,k)=1}=1-χ≤1,0≤P{γ(t+1,k)=0|γ(t,k)=1}=χ≤1
其中γ(t,k)、γ(t+1,k)分别表示k批次t时刻、t+1时刻系统故障判定函数,取0表示系统正常,取1表示系统故障,α表示系统当前时刻正常运行但下一时刻发生故障的概率,χ表示当前时刻系统故障但下一时刻恢复正常运行的概率;
1-4.确定判断每批次故障的发生是否与当前时刻有关的概率矩阵:
首先,定义状态传递概率矩阵为
其中p00=1-α,p01=α,p10=χ,p11=1-χ;
进而,得到批次间状态变化的n步传递函数概率矩阵Pn;
1-5.批次过程系统的随机迭代学习控制律描述如下:
其中Δu(t,k)表示k批次t时刻的系统随机迭代学习输入更新律,u(t,0)表示开始批次t时刻的系统输入,并设置为0;
1-6.批次过程系统可能发生故障的情况下,系统输入和系统状态误差分别如下:u(t,k)=(1-γ(t,k))u(t,k-1),δ(x(t,k))=x(t,k)-x(t,k-1)
其中x(t,k-1)表示k-1批次t时刻的系统状态,δ(x(t,k))表示k批次t时刻的系统状态误差;
1-7.根据1-1及1-6,得到下列状态误差和输出误差表达式:
其中表示拓展的外部扰动,e(t+1,k)、e(t+1,k-1)是k批次、k-1批次t+1时刻的系统输出误差,y(t+1,k)、yr(t+1,k)分别是k批次t+1时刻的系统输出和系统期望输出,δ(x(t+1,k))、δ(x(t-d(t),k))分别是k批次t+1时刻、t-d(t)时刻的系统状态误差,A、Ad、B、C分别是适当维度的常数矩阵;
步骤2具体如下:
2-1.基于步骤1,进一步得到改写后的系统误差模型如下:
其中e(t+1-d(t),k-1)是k-1批次t+1-d(t)时刻的系统输出误差,z(t,k)表示k批次t时刻的系统整体误差,I为适当维度的酉矩阵;
2-2.进一步得到系统的随机迭代学习更新律如下:
Δu(t,k)=(1-γ(t,k))K0X(t,k)
其中K0为满足系统要求的增益矩阵;
2-3.在下一时刻,重复步骤2-1到2-2继续求解新的最优系统随机迭代学习更新律Δu(t,k),得到最优控制量,作用于控制对象,并依次循环。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810760549.9/1.html,转载请声明来源钻瓜专利网。