[发明专利]人工智能知识管理系统与其形成分布式记录的方法在审

专利信息
申请号: 201810727198.1 申请日: 2018-07-04
公开(公告)号: CN110750591A 公开(公告)日: 2020-02-04
发明(设计)人: 刘文卿 申请(专利权)人: 全球智能股份有限公司
主分类号: G06F16/27 分类号: G06F16/27;G06F21/62;G06N3/06
代理公司: 11240 北京康信知识产权代理有限责任公司 代理人: 梁丽超;田喜庆
地址: 中国*** 国省代码: 中国台湾;71
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 人工智能模型 知识管理系统 类神经网络 人工智能 管理模块 输出数据 区块 算法 知识库 管理开发 输出管理 输入管理 演算结果 重新演算 链节点 演算 计算机系统 记录 建构 管理 散布 开发
【说明书】:

发明涉及人工智能知识管理系统与其形成分布式记录的方法。一种以计算机系统实现的人工智能知识管理系统,其中设有输入管理模块,用以管理在开发人工智能模型时使用的类神经网络算法的输入数据;设有人工智能模型管理模块,用以管理人工智能模型,提供选择;设有输出管理模块,用以管理开发人工智能模型时以类神经网络算法产生的输出数据;之后以演算结果管理模块管理每次演算的结果,并提供调整人工智能模型的参数,以及重新演算产生的输出数据,以此建构一知识库,并通过一区块链技术形成散布于多个区块链节点的分布式记录。

技术领域

说明书公开一种知识管理系统,特别是一种以区块链技术建立的人工智能知识管理系统,以及系统形成分布式记录的方法。

背景技术

在人工智能(Artificial Intelligence,AI)领域中,建立一个可以解决具体问题的人工智能模型是最重要的一个课题,例如在一些领域中,可以通过反复验证成功的人工智能模型正确进行如人脑执行的判断,如影像辨识、语意分析、游戏等。

而类神经网络(Artificial Neural Network)算法则成为人工只能模型建模的最佳工具中的一个,类神经网络是由很多非线性的运算单元,称为神经元(Neuron),和在这些神经元间的众多连结所组成,形成一个类神经网络,这些神经元通常是以平行且分散的方式在作运算,其中提供的学习机制依赖于神经元的激励值(activities of the neurons)。在一个类神经网络中,设有一组输入神经元,经过特定数据激发,在激励值被加权(weights)并通过一个函数演算后,神经元的激励值被传递到其他神经元,当这个过程不断重复,激发输出神经元,最后,这个输出神经元的激励值即为演算的结果。

然而,在达到人工智能模型的预期结果之前,类神经网络演算需要大量重复的演算,尝试多次失败与调整,才可能让输出的结果接近预期,然而,中间的过程却没有建立可以分享给公众的知识库,使得要建立人工智能的后进者仍需要重复过去的尝试与错误才能够得到结果。

发明内容

为了建立一个可以分享给大众的人工智能知识库,使得后进者可以循着前人的脚步快速开发,并且保有安全性与正确性,说明书公开了一种利用区块链(blockchain)技术的人工智能知识管理系统,主要目的的一个就是通过区块链技术可以安全且正确地分享开发一个人工智能模型的过程,成为后来开发者的知识库。

根据实施例中的一个,人工智能知识管理系统包括一计算机系统,其中包括多个计算机系统搭配软件实现的功能模块,包括一输入管理模块,用以管理开发人工智能模型时使用的类神经网络算法的输入数据;一人工智能模型管理模块,用以管理多个人工智能模型,提供选择出人工智能模型;一输出管理模块,用以管理开发该人工智能模型时以类神经网络算法产生的输出数据;以及一演算结果管理模块,用以管理前述的功能模块应用的数据,包括每次调整人工智能模型的参数,以及每次重新以类神经网络算法产生的输出数据。

如此,进一步地,所述的输入数据、人工智能模型、输出数据与每次调整人工智能模型的参数形成一知识库,并通过区块链技术形成散布于多个区块链节点的分布式记录。

进一步地,所述的输出数据会与一期望值比对,若不符期望,系统提供调整人工智能模型参数的机制。

进一步地,人工智能知识管理系统实现一云端知识平台,提供的一区块链记录处理模块提供一查询记录的功能,让人工智能知识管理系统的使用者以计算机装置以区块链技术查询对应其中的一个人工智能模型的输入数据、输出数据与每次调整人工智能模型的参数。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于全球智能股份有限公司,未经全球智能股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810727198.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top