[发明专利]一种基于特征个性化修改的服装推荐优化方法及其系统在审
申请号: | 201810687451.5 | 申请日: | 2018-06-28 |
公开(公告)号: | CN109064249A | 公开(公告)日: | 2018-12-21 |
发明(设计)人: | 杨子琳;苏卓;周凡;郑贵锋 | 申请(专利权)人: | 中山大学 |
主分类号: | G06Q30/06 | 分类号: | G06Q30/06;G06K9/62 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 510006 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 服装特征 服装图片 美学特征 自定义 服装 目标图片 拼接 个性化 视觉特征向量 名称关键词 余弦相似度 反馈 检索技术 属性特征 同一空间 选择目标 映射 花纹 优化 词语 检索 图像 风格 图片 | ||
本发明公开了一种基于特征个性化修改的服装推荐优化方法及其系统。其中,该方法包括:用户根据简单的词语进行检索,获得推荐类似服装图片;根据用户想要修改装饰、花纹、风格等美学特征选择目标图片,自定义修改获得自定义目标图片;提取推荐类似服装图片的属性特征;提取自定义目标图片的美学特征;结合前述两者进行拼接获得完整的服装特征;对完整的服装特征进行计算余弦相似度处理,获得与拼接后完整的服装特征的服装图片最相似的服装,作为最新的推荐反馈给用户。实施本发明实施例,能够弥补了现有属性反馈检索技术中需要准确描述出需要修改属性的名称关键词,以及将从图像中提取出的视觉特征向量与文字关键词映射到同一空间内的不足,以实现对服装美学特征的修改和再推荐。
技术领域
本发明涉及计算机视觉技术领域,具体涉及一种基于特征个性化修改的服装推荐优化方法及其系统。
背景技术
商品推荐是在线购物的过程中不可缺少的重要一步,是一项综合了物体检测、图像分类、特征学习以及用户偏好分析的技术。推荐的直接目的是从众多商品中预测出符合用户期望的商品进行反馈,从而促使用户进入购买流程。传统的电商购物过程中,使用的推荐方法可以大致分解为两种基本方法:基于内容的推荐和协同过滤方法。
基于内容的推荐将物品属性分解为一系列特征标签,通过用户的浏览、收藏、购买等行为推断用户的兴趣,再对新产品计算每个特征标签与用户偏好的相似度,选择相似度高的进行推荐。这类方法的推荐结果具有较强的可解释性和稳定性,由于它的推荐是基于物品本身特征,因此对于新加入的项目没有冷启动问题。缺点是不适合提供有惊喜的推荐,并且无法为用户推荐未评分过的热门商品类别。
协同过滤的推荐方法是基于用户行为,例如购买、评分等来进行推荐。应用协同过滤算法实现服装推荐系统的常见技术可以分为三类:基于用户的协同过滤,基于物品的协同过滤,以及隐语义模型。前两种方法计算用户或物品间的相似度,将偏好相似的用户购买的商品或与本用户自己购买的商品相似的商品推荐给用户。而后一种方法则注重挖掘用户和物品在一系列特征因子上表现出的偏好和倾向,具有较好的可扩展性。
随着服装电商的兴起,服装成为了在线购物中的一个大类,由于服装本身款式、装饰和花纹的多样性及不易描述的特性,视觉特征的检测和提取对于构建准确的推荐模型尤为重要,目前主流的技术是应用深度学习中的神经网络从服装图片中提取视觉特征,并转化成向量表示,作为推荐模型的部分或全部输入。
而现有的问题在于,用户想要的服装可能并不是与所得到的推荐结果完全一致的,而是比较接近的。用户也许会想要修改或替换其中的某个特征,从而得到满意的推荐结果。这个特征可能是颜色、长度等易于用统一的关键词描述的属性特征,也可能是某种特定的装饰、花纹或风格等难以用文本量化描述的美学特征。
目前有种属性反馈检索的技术,给定一张推荐结果中的服装图片和用户想要修改的其中一个属性作为输入,该技术首先结合每个属性的空间分布和语义,生成该属性的特征向量,将描述了每个服装类别中的相同特征的属性划分为聚类(例如代表颜色的红色,蓝色,绿色为一个聚类;代表袖子长度的长袖,短袖,无袖为一个聚类,代表服装长度的长款,中款,短款为一个聚类等),每个聚类代表一个概念。用神经网络从推荐结果的服装图片中提取出视觉特征并用向量表示为xq,再将用户想要修改的属性用向量表示为wp(例如用户想将原本的无袖属性替换为长袖属性,则将长袖属性表示为wp),在概念聚类中找出与用户想要修改的属性同一聚类的属性,并用向量表示为wn(上例中,与用户想要的长袖属性同一概念聚类的属性为无袖,将无袖属性表示为wn)。从原始的服装图片的特征向量xq中减去与修改属性同一概念聚类的特征向量wn,再加上用户想要修改的属性对应的特征向量wp,得到一个代表用户希望得到的服装的特征向量xo(上例中,合成的特征向量xo代表紫色,长袖,长裙三个属性)。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810687451.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:订单数据同步的校验方法、装置及设备
- 下一篇:礼品推荐方法、介质和计算设备