[发明专利]一种基于过程尺寸特征的锌矿品位软测量方法有效

专利信息
申请号: 201810446660.0 申请日: 2018-05-11
公开(公告)号: CN108647722B 公开(公告)日: 2021-11-23
发明(设计)人: 唐朝晖;牛亚辉;曾思迪;史伟东;高小亮 申请(专利权)人: 中南大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 广州市红荔专利代理有限公司 44214 代理人: 吝秀梅
地址: 410083 湖南*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 过程 尺寸 特征 锌矿 品位 测量方法
【说明书】:

一种基于过程特征的锌浮选精矿品位的软测量的方法,本发明综合了专家知识和数据建模方法,首先根据现场工人看泡时的观察重点利用图像中的气泡尺寸分布来表征泡沫图像,根据现场工人需要观察一段时间内泡沫状态来判断当前生产状态的特点提出用尺寸分布序列来数学化当前生产状态,并提出一种对泡沫尺寸序列的建模方法,降低了特征向量的维数。在预测算法中利用积累的大量数据采用改进的提升决策树算法,有效的抑制由于学习太快导致的过拟合问题,提高了泛化能力。实验证明本发明方法计算简单,执行速度较快,预测准确度较高,便于在现场实际操作,可即时指导现场操作,优化生产过程,解决了现锌矿品位在线检测难的问题。

技术领域

本发明属于泡沫浮选技术领域,具体涉及一种锌浮选精矿品位的预测方法。

背景技术

泡沫浮选是现今锌冶炼中最主要的选矿方法之一,浮选是根据矿物颗粒表面物理化学性质的不同,按矿物可浮性的差异进行分选的方法,泡沫浮选是一个将粉碎后的有用矿物和其共生的脉石分离的过程,通过在浮选过程中不断地搅拌和鼓风,在矿浆中形成大量具有不同尺寸、形态、纹理等特征的气泡,气泡携带矿物颗粒上升至浮选槽表面形成泡沫层,从而实现矿物与脉石的分离。对于泡沫浮选这样一个复杂的工业过程,因工艺流程长、子工序关联耦合严重、部分关键性参量难以在线检测等原因,浮选过程工况状态缺乏有效的综合感知手段,严重依赖于人工来回巡检,凭借经验大致评判当前生产是否处于正常状态,以便进一步实施相应的操作策略。这种单一粗犷、严重依赖人工经验感知的方法,常产生并不恰当的生产操作,无法保证生产的稳定优化运行。虽然选厂可以通过离线化验分析得到精确的精矿品位来判定浮选过程的生产状态,然而这往往需要数个小时,检验过程复杂且成本高严重滞后于生产过程。由于浮选工艺流程长、影响因素多,无法实现精矿品位的在线检测,影响了对加药量和其他参数的即时调整,最终影响了矿物的回收率。因此,研究浮选过程生产指标的实时在线检测方法,对指导生产操作和过程的优化运行具有重要的意义。

随着计算机技术、数字图像处理技术的快速发展,将基于机器视觉的软测量技术应用于浮选过程给浮选指标的实时监测带来了新的突破。机器视觉是一种模仿人类自身视觉感知能力来实现工业过程自动化测量和控制的重要手段,因其具有高精度、模块化、智能化、无损感知等多种优点,可以实现浮选过程精矿品位的在线检测。通过图像采集设备可以获得大量的不同品位下的泡沫视频,将这些视频与采集到的相应的生产数据组合起来,形成一个原始数据集,采用数据驱动建模的方法建立泡沫图像与精矿品位的数据模型,实现精矿品位的在线检测。已有的精矿品位预测方法主要是采用B样条偏最小二乘回归、支持向量机、神经网络等方法,这些方法都存在着不同程度的缺陷,它们难以处理大样本的数据,且对带噪声的数据比较敏感,在应用上仍然存在一定问题。

发明内容

针对锌浮选过程中精矿品位在线检测困难,成本高,延迟大以及在锌浮选精矿品位预测上的不足,本发明利用现场工人的经验知识与积累的生产数据,提出一种铅锌浮选泡沫图像过程特征的构造方法,同时构造一种精矿品位的预测方法,该方法具有良好的预测精度,抗干扰能力且有较快的运行速度。

本发明采用的技术方案步骤如下:

S1:收集不同品位下的锌浮选的泡沫视频和生产数据,对采集到的锌浮选数据以及生产数据进行数据预处理,如下:

1)剔除测量到的数据取值超出变化范围的错误数据;

2)剔除不匹配的数据以及存在空缺值的数据;

S2:利用浮选现场图像采集系统所获得的泡沫视频读取RGB泡沫图像,将泡沫图像由RGB颜色空间转化到HSI颜色空间,并提取亮度分量作为源图像,得到一个图像序列I=[I1,I2,...,Iq],q为视频帧数;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810446660.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top