[发明专利]基于深度学习的高速公路交通事故严重度预测方法有效
申请号: | 201810353740.1 | 申请日: | 2018-04-19 |
公开(公告)号: | CN108665093B | 公开(公告)日: | 2021-07-27 |
发明(设计)人: | 何杰;章晨;刘子洋;邢璐;周博见 | 申请(专利权)人: | 东南大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/26;G06N3/04 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 常虹 |
地址: | 211189 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 深度 学习 高速公路 交通事故 严重 预测 方法 | ||
本发明公开了一种基于深度学习的高速公路交通事故严重度预测方法,包括如下步骤:1、收集L个交通事故发生时的道路条件、驾驶员情况、车辆情况等M个变量因素,构成样本集;记录每个交通事故的严重度值rl;2、对收集到的L个事故样本的变量因素进行降维和归一化;3、建立深度学习神经网络,构建交通事故严重度预测模型;4、将降维后的待预测事故的变量因素向量x代入步骤3建立的交通事故严重度预测模型中,得到待预测事故的严重度预测结果。该方法能够精确地预测高速公路事故的严重度。
技术领域
本发明属于交通事故分析和预测领域,具体涉及一种基于深度学习的高速公路交通事故严重度预测方法。
背景技术
目前国内外对事故严重度的分析还主要停留在单一数据源和传统统计分析方法的层面,影响因素考虑较少,分析往往不透彻,模型误差较大。随着科技的进步,数据的收集正变得愈发容易。对交通事故有关的影响因素,如道路几何线型、线圈数据、天气状况、道路可见度、事故驾驶员状况等可以收集到海量的数据。如何通过科学的方法,基于对海量数据的分析使得事故的严重程度能够控制在一定的范围之内是当下亟待解决的一个重要议点。
发明内容
发明目的:本发明旨在提供一种高速公路交通事故严重度预测方法,该方法能够精确地预测高速公路事故的严重度。
技术方案:本发明采用如下技术方案:
基于深度学习的高速公路交通事故严重度预测方法,包括如下步骤:
(1)收集L个交通事故发生时的道路条件、驾驶员情况、车辆情况等M个变量因素,构成样本集S=(s1,s2,…,sL),其中sl=(f1l,f2l,…,fMl)T,fhl为编号为l的事故的第h个变量因素;记录每个交通事故的严重度值,rl为编号为l的事故的严重度值,h=1..M,l=1..L;
(2)对收集到的L个事故样本的变量因素进行降维和归一化,设降维后的样本sl′为I维,IM,sl′=(f1l′,f2l′,…,fIl′)T,fil′为降维后保留的变量因素,i=1..I;
归一化处理的公式为:
xil=(fil′-MinValue)/(MaxValue-MinValue)
其中xil为变量因素fil′归一化后的值,MinValue为{fi1′,fi2′,…,fiL′}中的最小值,MaxValue为{fi1′,fi2′,…,fiL′}中的最大值;
(3)建立深度学习神经网络,构建交通事故严重度预测模型;
(4)将待预测事故的变量因素按照步骤(2)中的降维方法进行降维,得到降维后的待预测事故变量因素向量x,将代入步骤(3)建立的交通事故严重度预测模型中,得到待预测事故的严重度预测结果。
所述道路条件包括坡度方向、平曲线方向,分别由0或1表示正或负。
所述驾驶员情况包括驾驶员年龄、驾驶员性别;其中驾驶员性别由0或1表示男或女。
所述车辆情况包括事故车辆车龄。
步骤(2)中采用主成分分析法或独立成分分析法对变量因素样本集S进行降维。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810353740.1/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理