[发明专利]一种基于数据挖掘的企业用电量分析与预测方法有效

专利信息
申请号: 201810307309.3 申请日: 2018-04-08
公开(公告)号: CN108510006B 公开(公告)日: 2020-06-09
发明(设计)人: 胡向东;郭佳;白银;李仁杰;韩恺敏 申请(专利权)人: 重庆邮电大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06Q10/04;G06Q50/06
代理公司: 北京同恒源知识产权代理有限公司 11275 代理人: 赵荣之
地址: 400065 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 数据 挖掘 企业 用电量 分析 预测 方法
【说明书】:

发明涉及一种基于数据挖掘的企业用电量分析与预测方法,结合温度、湿度和节假日等多影响因素,对企业用电量进行分析与预测。本方法首先利用牛顿插值法、归一化法和PAA算法对数据集进行预处理;再次,利用谱聚类算法对数据集进行聚类,判断异常数据并修正,得到与温度、湿度、节假日等相关性高的企业用电量分组;最后,选用同类企业用电量数据和其相关性高的影响因素作为模型的预测输入,利用循环神经网络(RNN)得出预测值。本发明根据不同的企业用电量类型,结合其用电量影响因数,构建不同的预测模型,可达到模型预测精度高,具有数据预处理能力的效果。

技术领域

本发明属于数据挖掘技术领域,具体涉及一种基于数据挖掘的企业用电量分析与预测方法。

背景技术

在社会经济发展中,电能起着至关重要的作用,各种研究和调查直接将电能消费与国家经济,技术和社会发展联系起来。一方面,电能需求呈指数级增长,可用资源正在以惊人的速度消耗;另一方面,电能还非常短缺,节能是基本需求。因此,应加强电能管理、优化电能使用,从而降低生产成本和环境危害,用电分析与预测是实现这一目标的重要手段。

目前,已开展了一些针对电力预测相关的研究工作,如基于人工神经网络的方法、基于支持向量机的方法等,但面对预测精度日益提高的需求已经无法满足电力管理部门的要求。传统的电力系统负荷预测只注重预测方法的研究,无法解决收集到的数据比较复杂、存在数据缺失、数据维度较大、数据差异大等问题,缺少了对数据预处理的关注。加之常用于负载预测的传统BP神经网络具有较好的非线性和自学能力,但具有易震荡、收敛速度慢、易陷入局部极小值、隐含层神经个数难以确定等缺点,很难满足需求。因此,研究寻求一种稳定,精度高的负载分析与预测技术是非常有意义的。

在传统的电力系统预测中,大部分只是单一的模型,无法对数据进行预处理,更无法提取数据最本质的特征,导致预测准确率较低。因此、本发明提出了一种能够取得高的准确率的企业用电量分析与预测方法。

发明内容

针对上述现有技术存在的问题,本发明的目的在于提供一种预测准确率高、收敛数度快的基于数据挖掘的企业用电量分析与预测方法。

为达到上述目的,本发明的基础方案为:

一种基于数据挖掘的企业用电量分析与预测方法,包括以下步骤:

S1:对企业用电量数据集进行预处理;

S2:利用聚类算法对数据预处理后的企业用电量数据集进行聚类;

S3:判断是否存在异常数据,若存在异常数据则对其进行修正处理;

S4:数据修正后,选取企业用电量样本集中时间序列的前80%数据为训练集,后20%数据为测试集;

S5:构建循环神经网络模型预测企业用电量;

S6:检验模型,若不满足要求,则返回步骤S2,对数据集重新聚类,以此反复,直到预测结果满足要求为止。

进一步,在所述步骤S1中,包括以下步骤:

S11:判断数据集是否有缺失值,若有,执行步骤S12,若没有,执行步骤S13;

S12:数据缺失值处理:利用牛顿差值法对数据缺失值进行填补,即利用企业在一段时间内的已知用电量做出特定函数,用所述特定函数获得这段时间内的数据缺失点,作为企业用电量的近似值;执行步骤S13;

S13:数据归一化处理:不同的数据量纲对数据分类结果会产生不同的影响,按照以下公式将数据归一化到[0,1]区间:

y=(x-xmin)/(xmax-xmin)

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810307309.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top