[发明专利]基于无限混合高斯和样条回归的风电功率曲线拟合方法有效

专利信息
申请号: 201810023362.0 申请日: 2018-01-10
公开(公告)号: CN108090323B 公开(公告)日: 2020-10-09
发明(设计)人: 胡清华;汪运 申请(专利权)人: 天津大学
主分类号: G06F30/27 分类号: G06F30/27;G06Q50/06
代理公司: 北京东方盛凡知识产权代理事务所(普通合伙) 11562 代理人: 宋平
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 无限 混合 回归 电功率 曲线拟合 方法
【说明书】:

发明公开了一种基于无限混合高斯和样条回归的风电功率曲线拟合方法,包括进行数据预处理、构造鲁棒的样条回归模型、利用变分贝叶斯优化鲁棒的样条回归模型、得出功率曲线以及概率功率曲线的步骤,本发明的风电功率曲线拟合方法只需要设置一些初始化参数,方法简单,能够容忍训练数据中存在一些非一致样本,精度高、误差小,可以进一步提高风电预报的精度。

技术领域

本发明涉及新能源领域和机器学习领域,特别涉及一种基于无限混合高斯和样条回归的风电功率曲线拟合方法。

背景技术

当前,随着全球的能源危机的出现以及使用传统能源如煤,石油等带来的日趋严峻的环境问题,找到替代原有的传统能源的任务越来越紧迫。风电作为一种清洁、可再生的能源受到了越来越多的关注。大规模的风电并网将会在一定程度上缓解能源危机,并且能带来经济效益和减少缓解污染。然而,由于风电本身的随机性和间歇性,从而导致在大规模风电并网后对整个电力系统的完全性和稳定性产生巨大影响。因此,从风电并网的角度来说,准确的功率预报是很有必要的,此外还可以减少电力系统的运行成本。

由于风速和功率之间的关系可以用功率曲线来表示。因此风电预报常用两步法,第一步先得到风速的预报值,第二步是利用功率曲线得到功率的预报。通常情况下,功率曲线是由风机的生产厂商提供的。然而,该功率曲线是一条理论的功率曲线,没有考虑环境等因素(如气温和湿度等)的影响。在实际中,随着地理环境和气候的不同,实际功率曲线会产生变化。因此,直接利用理论功率曲线来实现功率预报会带来额外的预报误差。因此,很多学者也研究如何去得到一个准确的实际功率曲线来进一步提高风电预报的精度。除此以外,准确的功率曲线还能够在线监测风机的运行状态和减少风机的运行和维护成本等。

目前,可以将风电功率曲线建模技术分成两大类:参数模型和非参数模型。一般地,参数模型主要由带有几个参数的数学表达式构成,主要包括线性分割法、多项式功率曲线、理想功率曲线、概率模型、动态功率曲线、4参数、5参数logistics模型以及修正的双曲正切模型等。对于多项式模型而言,常用三次功率曲线、二次功率曲线、6阶以及9阶多项式模型来拟合功率曲线。参数模型的缺点是在描述功率曲线的动态特性上其性能有限。与参数模型不同,非参数模型不需要利用一些数学表达式也不需要对功率曲线的形状有先验知识,仅仅利用历史的功率以及风速数据就可以拟合出各种各样的功率曲线。非参数模型主要包括样条回归,人工神经网络法,模糊法和一些数据挖掘的方法如支持向量机,随机森林和K近邻等。尽管非参数模型比参数模型灵活,但是其计算量也相对较大。

除了功率曲线的建模方法外,另一个影响我们获得一个精确的功率曲线的因素是数据的质量。然而,在实际中,获得的风速与功率的数据中经常会存在很多不一致的样本。造成以上现象的原因包括传感器误差、停机维护、弃风限电以及环境因素如结冰等。不一致样本的特性是在给定一个风速,真实的功率数据远离功率曲线。为了提高数据的质量,通常用提前去除这些不一致样本,然后再利用处理后的数据构建功率曲线模型。然而,此类方法的缺陷在于我们无法保证所有的不一致样本都能被检测到。

在数据中存在一些非一致样本时,由于实际功率与功率曲线上的功率距离较远,因此此处的误差较大,误差分布呈现出非高斯特性,具有长尾现象。此种情况下高斯分布很难描述以上特性的误差分布。然而,当前的一些模型如样条回归、多项式模型等都假设误差服从高斯分布,在训练数据中存在一些非一致样本时,真实的误差分布特性与假设的误差分布之间并不一致。因次,在存在非一致样本的情况下,假设误差服从高斯分布的功率曲线模型并不合适。

发明内容

本发明的目的是解决现有风电功率曲线的精度较低误差较大的技术问题,本发明提供一种基于无限混合高斯和样条回归的风电功率曲线拟合方法。

本发明解决技术问题采用如下技术方案:

一种基于无限混合高斯和样条回归的风电功率曲线拟合方法,包括以下步骤:

1)数据预处理:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810023362.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top