[发明专利]图像分类方法、装置以及计算机可读存储介质有效

专利信息
申请号: 201711060208.2 申请日: 2017-11-01
公开(公告)号: CN109753978B 公开(公告)日: 2023-02-17
发明(设计)人: 彭湃;吴凯琳;郭晓威 申请(专利权)人: 腾讯科技(深圳)有限公司;腾讯云计算(北京)有限责任公司
主分类号: G06V10/764 分类号: G06V10/764;G06V10/82;G06N3/0464;G06N3/048;G06N3/084
代理公司: 北京派特恩知识产权代理有限公司 11270 代理人: 金爱静;张颖玲
地址: 518057 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 分类 方法 装置 以及 计算机 可读 存储 介质
【说明书】:

本申请实施例提供一种图像分类方法、装置以及计算机可读存储介质,包括:获得原始图像、以及所述原始图像中所包括的对象的类别;调整所述原始图像的显示参数满足取值条件;根据所述显示参数的分布需要满足的分布条件,对所述原始图像的所述显示参数进行变换获得新图像;基于调整后的原始图像和所述新图像进行组合构造的训练集、以及所包括对象的类别,训练神经网络模型;基于训练后的所述神经网络模型,将待预测图像和标注有对象的类别的参考图像输入所述神经网络模型,判断所述待预测图像中所包括对象的类别。

技术领域

发明涉及图像处理技术,特别涉及一种图像分类方法、装置以及计算机可读存储介质。

背景技术

随着多媒体技术与计算机设备网络的广泛应用,网络上出现大量图像数据。如何能够有效的管理这些图像文件,自动识别和分类这些图像的内容变的越来越重要。

目前,随着机器学习方法的不断完善和发展,深度学习算法越来越受到重视,其中卷积神经网络就是深度学习中一种重要的算法,目前已成为图像识别领域的研究热点。基于卷积神经网络的图像分类技术能够自动从图像中提取特征信息,通过提取的特征进行图像表达。

然而,针对不同具体领域或者不同类别的图像,基于卷积神经网络进行分类时,往往需要分别建立与该领域或者类别对应的网络模型,每个网络模型包含的层级与整体架构通过训练的方式进行确定,而为了获取更好的特征表达能力以取得更好的分类精度,尤其是针对分类精度要求更高的领域,往往需要针对同一领域或类别的图像分别获得更多相同或者同类的原始图像数据作为训练数据,以增加网络深度、扩大网络规模,通过更多训练数据来将网络模型的各个层级的架构分别基于前一层级的架构确定后再进行搭建,从而网络模型训练方式复杂,且训练得到的网络模型对图像的分类精度不够稳定。

发明内容

为解决现有存在的技术问题,本发明实施例提供一种训练方式简单、且可提高分类精度稳定性的图像分类方法、装置以及计算机可读存储介质。

为达到上述目的,本发明实施例的技术方案是这样实现的:

一种图像分类方法,包括:获得原始图像、以及所述原始图像中所包括的对象的类别;调整所述原始图像的显示参数满足取值条件;根据所述显示参数的分布需要满足的分布条件,对所述原始图像的所述显示参数进行变换获得新图像;基于调整后的原始图像和所述新图像进行组合构造的训练集、以及所包括对象的类别,训练神经网络模型;基于训练后的所述神经网络模型,将待预测图像和标注有对象的类别的参考图像输入所述神经网络模型,判断所述待预测图像中所包括对象的类别。

一种图像分类装置,包括:获取模块,用于获得原始图像、以及所述原始图像中所包括的对象的类别;调整模块,用于调整所述原始图像的显示参数满足取值条件;变换模块,用于根据所述显示参数的分布需要满足的分布条件,对所述原始图像的所述显示参数进行变换获得新图像;训练模块,用于基于调整后的原始图像和所述新图像进行组合构造的训练集、以及所包括对象的类别,训练神经网络模型;预测模块,用于基于训练后的所述神经网络模型,将待预测图像和标注有对象的类别的参考图像输入所述神经网络模型,判断所述待预测图像中所包括对象的类别。

一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现本发明任一实施例所提供的图像分类方法。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(深圳)有限公司;腾讯云计算(北京)有限责任公司,未经腾讯科技(深圳)有限公司;腾讯云计算(北京)有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711060208.2/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top