[发明专利]一种纳米级普鲁士蓝薄膜的选择性电化学沉积方法在审
申请号: | 201710933121.5 | 申请日: | 2017-10-10 |
公开(公告)号: | CN107860804A | 公开(公告)日: | 2018-03-30 |
发明(设计)人: | 冯雪;陈毅豪;鲁思渊;陆炳卫 | 申请(专利权)人: | 清华大学 |
主分类号: | G01N27/327 | 分类号: | G01N27/327;C25D9/02 |
代理公司: | 北京万象新悦知识产权代理事务所(普通合伙)11360 | 代理人: | 王岩 |
地址: | 100084*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 纳米 普鲁士 薄膜 选择性 电化学 沉积 方法 | ||
技术领域
本发明属于电化学技术领域,具体涉及一种纳米级普鲁士蓝薄膜的选择性电化学沉积方法。
背景技术
普鲁士蓝被广泛应用于生物传感,因为其可以在低电压下与过氧化氢发生反应,因此被称为“人工过氧化氢酶”。因此被用于葡萄糖检测,乳酸检测等。普鲁士蓝具有电致变色特性,因此可以用于变色玻璃、变色窗的制造。普鲁士蓝的制备有多种方法,其中电化学沉积是最方便最快捷的,同时可以得到较好的沉积薄膜质量。电化学沉积过程中沉积电位、沉积电流和沉积时间等参数控制被沉积薄膜的厚度、质量和与被沉积基底的粘附力。纳米级的普鲁士蓝薄膜可以降低生物监测中的响应时间,减少离子扩散阻力,提高反应响应电流。但是纳米级薄膜需要降低沉积时间,同时为了保证沉积薄膜的质量,需要提高沉积速度,因此可能会导致薄膜不致密,强度低和与基底粘附力差,容易破裂脱粘等问题。现有的研究内容大多以向普鲁士蓝电沉积液中添加其他物质例如聚合物的方式提高沉积成功率和薄膜质量质量,同时实现较低的薄膜电化学阻抗。这样做的后果是影响普鲁士蓝本身的品质,同时增加了实验材料准备难度,聚合物的使用降低了长期使用的可靠性和性能稳定性。
发明内容
针对以上现有技术中存在的问题,本发明提出了一种纳米级普鲁士蓝薄膜的选择性电化学沉积方法,通过对金属电极表面进行处理,制备出表面微结构,提高普鲁士蓝电化学沉积的效率和效果,并实现纳米级厚度的普鲁士蓝薄膜的选择性电沉积。
本发明进行普鲁士蓝薄膜电化学沉积采用的电化学沉积反应装置包括:微型电化学反应池、电化学沉积溶液、电化学沉积对电极、电化学沉积工作电极、电化学沉积参比电极以及电化学工作站;其中,在微型电化学反应池中盛放电化学沉积溶液;电化学沉积对电极、电化学沉积工作电极和电化学沉积参比电极插入电化学沉积溶液中;电化学沉积对电极、电化学沉积工作电极和电化学沉积参比电极分别通过电缆连接至电化学工作站。
本发明的纳米级普鲁士蓝薄膜的选择性电化学沉积方法,包括以下步骤:
1)制备金属电极,金属电极包括传感器工作电极的图案和传感器对电极的图案;
2)将传感器工作电极的图案和传感器对电极的图案之间进行绝缘处理;
3)在金属电极的表面制备出特征尺寸为纳米或者微米级的表面微结构;
4)配置普鲁士蓝的电化学沉积溶液,添加入微型电化学反应池中,电化学沉积对电极、电化学沉积工作电极和电化学沉积参比电极分别插入电化学沉积溶液中,电化学沉积对电极、电化学沉积工作电极和电化学沉积参比电极分别通过电缆连接至电化学工作站;
5)将金属电极中的传感器工作电极的图案沉浸在电化学沉积溶液中,并将传感器工作电极的图案连接至电化学沉积工作电极;
6)电化学工作站对传感器工作电极的图案进行电化学沉积反应,在传感器工作电极的图案上形成普鲁士蓝薄膜,传感器工作电极的图案及其上的普鲁士蓝薄膜构成传感器工作电极,传感器对电极的图案作为传感器对电极;
7)电化学沉积反应完成后,更换微型电化学反应池内的溶液,加入稳定性扫描溶液,对传感器工作电极进行稳定性扫描;
8)将传感器工作电极从微型电化学反应池中取出,利用加热装置烘干;
9)更换微型电化学反应池内的溶液,加入用于活化的溶液,将烘干后的传感器工作电极在微型电化学反应池内做活化处理;
10)将活化后的传感器工作电极清洗干净,得到具有纳米级普鲁士蓝薄膜的传感器工作电极。
其中,在步骤1)中,制备金属电极具体包括以下步骤:
a)在清洁干燥的基底上旋涂转印层;
b)在转印层上通过旋涂或者刮膜的方式,或者使用现成的薄膜绝缘材料粘贴固定在转印层的表面,制备绝缘支持层;
c)在绝缘支持层上溅射粘结层;
d)在粘结层上通过电镀、电化学沉积、气相沉积或磁控溅射的方式制备金属薄膜,金属薄膜的厚度为纳米级或者微米级;
e)将沉积过金属薄膜的基底切片或者剪裁成所需要的尺寸,然后通过半导体加工的方式对金属薄膜图形化,制备出所需要的金属电极,金属电极包括传感器工作电极的图案和传感器对电极的图案。
在步骤1)的a)中,基底采用硅片、玻璃片中聚合物膜中的一种。粘结层的厚度为纳米级,以增加沉积的金属薄膜的沾附能力。
在步骤1)的c)中,通过半导体加工的方式对金属薄膜图形化,包括以下步骤:
i.在金属薄膜上旋涂光刻胶;
ii.采用掩膜在光刻机下对光刻胶进行曝光;
iii.在显影液中显影;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710933121.5/2.html,转载请声明来源钻瓜专利网。