[发明专利]一种对跟随目标进行定位的方法以及跟随设备有效

专利信息
申请号: 201710575900.2 申请日: 2017-07-14
公开(公告)号: CN107292907B 公开(公告)日: 2020-08-21
发明(设计)人: 齐欧;兴军亮;唐心意;高晋;彭佩玺;王强;刘焕云 申请(专利权)人: 灵动科技(北京)有限公司
主分类号: G06T7/223 分类号: G06T7/223;G06T7/246;G06T7/70;G05D1/12
代理公司: 北京汇知杰知识产权代理有限公司 11587 代理人: 吴焕芳;杨巍
地址: 100094 北京市海淀区中*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 跟随 目标 进行 定位 方法 以及 设备
【说明书】:

发明提供了一种对跟随目标进行定位的方法以及跟随设备,基于视觉获取待识别图像,并通过标准图像特征对待识别图像中各个位置的图像区域对应的图像子块进行图像特征匹配,确定图像特征与标准图像特征匹配的图像子块,根据该图像子块在待识别图像中的位置信息,确定跟随设备与跟随目标的相对位置信息。上述基于视觉的待识别图像定位跟随设备与跟随目标的相对位置信息的方式,不易受到周围环境的干扰,定位精度高,保证跟随设备能够准确跟踪跟随目标,无需用户实时观察并维护该跟随设备,避免了给用户的操作繁琐、耗费时间长等一系列的问题,提高了用户出行时间的利用效率,且大大降低了行李箱丢失的风险。

技术领域

本发明涉及机器人领域,具体而言,涉及一种对跟随目标进行定位的方法以及跟随设备。

背景技术

随着经济的发展,人们的生活水平也在不断提高,用户的出行越来越普遍,如工作中的商务出差或者生活中的旅行,用户在出行时通常要携带行李箱,并且对出行行李箱的功能性需求越来越高。例如,对需要长时间外出的用户,其更希望解放自己的双手,减轻负担。

相关技术CN201610329435.X提供了一种具有自主跟随避障功能的移动机器人(具体可以是行李箱),该行李箱通过射频定位模块获取与用户的相对位置信息,根据得到的该相对位置信息变化控制行李箱自动跟随用户行走。

本申请的发明人在研究中发现,相关技术中的行李箱至少存在如下问题:其包括的用于进行定位的射频定位模块易受到行李箱周围环境的干扰,导致获得的与用户的相对位置信息准确度较差,进而导致该行李箱无法准确跟随用户行走,这就需要用户实时观察并维护行李箱,从而给用户带来了操作繁琐、耗费时间长等一系列的问题,同时增加了行李箱丢失的风险。

发明内容

本发明的目的在于提供一种对跟随目标进行定位的方法以及跟随设备,其能够准确定位跟随设备与跟随目标的相对位置信息。

第一方面,本发明实施例提供了一种对跟随目标进行定位的方法,包括:

跟随设备获取至少一个待识别图像;

针对每一个所述待识别图像,按照第一设定检测区域的大小,检测所述待识别图像中各个图像子块的图像特征;其中,每个所述图像子块对应的图像区域的大小等于所述第一设定检测区域的大小;

根据跟随目标的标准图像特征以及检测到的各个图像子块的图像特征,从所述各个图像子块中,确定对应的图像特征与所述标准图像特征匹配的图像子块;

根据确定的图像子块在所述待识别图像中的位置,确定所述跟随设备与所述跟随目标的相对位置信息。

结合第一方面,本发明实施例提供了第一方面的第一种可能的实施方式,其中,所述标准图像特征包括:标准跟踪图像特征和标准检测图像特征;根据跟随目标的标准图像特征以及检测到的各个图像子块的图像特征,从所述各个图像子块中,确定对应的图像特征与所述标准图像特征匹配的图像子块,包括:

将各个图像子块的图像特征分别与所述标准跟踪图像特征进行匹配,得到各个图像子块的第一置信度;所述第一置信度用于表示图像子块的图像特征与标准跟踪图像特征的匹配相似度;

从得到的所述各个图像子块的第一置信度中,提取第一置信度最大的图像子块;

根据所述标准检测图像特征与所述第一置信度最大的图像子块的图像特征,从所述待识别图像中确定输出图像子块;所述输出图像子块对应的图像特征与所述标准图像特征匹配。

结合第一方面的第一种可能的实施方式,本发明实施例提供了第一方面的第二种可能的实施方式,其中,根据所述标准检测图像特征与所述第一置信度最大的图像子块的图像特征,从所述待识别图像中确定输出图像子块,包括:

根据预设的搜索区域大小,在所述待识别图像中划定搜索区域,使所述搜索区域覆盖所述第一置信度最大的图像子块;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于灵动科技(北京)有限公司,未经灵动科技(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710575900.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top