[发明专利]脉冲神经网络信息转换为人工神经网络信息的方法和系统有效

专利信息
申请号: 201710056200.2 申请日: 2017-01-25
公开(公告)号: CN106845632B 公开(公告)日: 2020-10-16
发明(设计)人: 裴京;施路平;吴臻志;李国齐;邓磊 申请(专利权)人: 清华大学
主分类号: G06N3/04 分类号: G06N3/04
代理公司: 北京华进京联知识产权代理有限公司 11606 代理人: 王程
地址: 100084*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 脉冲 神经网络 信息 转换 人工 方法 系统
【说明书】:

发明涉及一种脉冲神经网络信息转换为人工神经网络信息的方法,所述方法包括:获取转换时间步;在所述转换时间步持续时长内,接收前继脉冲神经元输入的脉冲神经元输入信息,所述脉冲神经元输入信息包括脉冲尖峰信息;根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息;输出所述人工神经元转换信息。本发明所提供的脉冲神经元信息转人工神经元信息的方法,将脉冲神经元信息,按照时间步的方式转换的方式,转换为人工神经元信息,提高了神经网络对于脉冲神经元信息和人工神经元信息的兼容能力。

技术领域

本发明涉及神经网络技术领域,涉及一种神经网络信息的转换方法及系统,特别是涉及脉冲神经网络信息转换为人工神经网络信息方法和系统。

背景技术

如今的人工神经网络研究绝大多数仍是在冯·诺依曼计算机软件并搭配高性能GPGPU(General Purpose Graphic Processing Units通用图形处理单元)平台中实现的,整个过程的硬件开销、能耗和信息处理速度都不容乐观。为此,近几年神经形态计算领域迅猛发展,即采用硬件电路直接构建神经网络从而模拟大脑的功能,试图实现大规模并行、低能耗、可支撑复杂模式学习的计算平台。

然而,传统的神经形态系统中,神经网络的主要有两种形态,一种为脉冲神经网络,一种人工神经网络,两者对同样的输入信息有着不同的表达方式,导致人工神经网络和脉冲神经网络因处理的信息不同而不能兼容。

发明内容

基于此,有必要针对两种不同的神经网络输入的信息不兼容的问题,提供一种脉冲神经元信息转人工神经元信息的方法和系统,所述方法包括:

获取转换时间步;

在所述转换时间步持续时长内,接收前继脉冲神经元输入的脉冲神经元输入信息,所述脉冲神经元输入信息包括脉冲尖峰信息;

根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息;

输出所述人工神经元转换信息。

在其中一个实施例中,所述根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息,包括:

将所述前继脉冲神经元输入的脉冲尖峰信息的数量进行累计,获取所述前继脉冲神经元输入的脉冲尖峰信息的第一总数量;

将所述前继脉冲神经元输入的脉冲尖峰信息的第一总数量,确定为所述时间步的,所述前继脉冲神经元输入的第一人工神经元转换信息。

在其中一个实施例中,所述接收前继脉冲神经元输入的脉冲神经元输入信息,还包括:

接收至少两个所述前继脉冲神经元分别输入的脉冲神经元输入信息;

则所述根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息,还包括:

将所有所述前继脉冲神经元输入的脉冲尖峰信息的数量进行累计,获取所有所述前继脉冲神经元输入的脉冲尖峰信息的第二总数量;

将所有所述前继脉冲神经元输入的脉冲尖峰信息的第二总数量,确定为所述时间步的,所有所述前继脉冲神经元输入的第二人工神经元转换信息。

在其中一个实施例中,所述脉冲神经元输入信息,还包括:

前继脉冲神经元与当前神经元的连接权重索引;

所述根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息,还包括:

根据所述前继脉冲神经元与当前神经元的连接权重索引,读取前继脉冲神经元与当前神经元的连接权重信息;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710056200.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top