[发明专利]基于分类频率敏感三维自组织映射的视差估计方法有效
申请号: | 201610317515.3 | 申请日: | 2016-05-13 |
公开(公告)号: | CN105933691B | 公开(公告)日: | 2017-11-10 |
发明(设计)人: | 黎洪松;程福林 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | H04N13/00 | 分类号: | H04N13/00 |
代理公司: | 桂林市持衡专利商标事务所有限公司45107 | 代理人: | 陈跃琳 |
地址: | 541004 广西*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 分类 频率 敏感 三维 组织 映射 视差 估计 方法 | ||
1.基于分类频率敏感三维自组织映射的视差估计方法,其特征是,包括如下步骤:
步骤1、先对视差序列样本的每帧图像分块,每个图像块为一个训练矢量,再根据亮度大小将训练矢量进行分类,每个分类形成一个训练矢量集;
步骤2、分别为每个分类的训练矢量集进行以下学习训练,得到每个分类的最佳匹配模式库;
步骤2.1、根据设定的三维自组织映射网络的大小N,从该分类的L个训练矢量集中选择N个训练矢量来构成该分类的初始模式库,其中N<<L;该初始模式库中的训练矢量称为模式矢量,且初始模式库中的模式矢量排列成三维立体结构;
步骤2.2、初始化每个模式矢量的邻域函数Nj(0)和每个模式矢量的响应计数器cj;
步骤2.3、输入该分类训练矢量集中的一个训练矢量,并分别计算该训练矢量与其对应分类的初始模式库中的各个模式矢量的失真从中选择出与训练矢量失真最小的模式矢量作为获胜模式矢量;
其中,为频率敏感函数;s为设定的频率敏感指数;dj(t)为训练矢量与模式矢量的均方误差;j=0,1,…,N-1,N为设定的三维自组织映射网络的大小;t=0,1,…,L-1,L为该分类训练矢量集中训练矢量的个数;
步骤2.4、调整获胜模式矢量及其三维邻域范围内的模式矢量;
步骤2.5、将获胜模式矢量的响应计数器累加1,并返回步骤步骤2.3重新选择一个训练矢量,直到输入完该分类训练矢量集中所有的训练矢量,即得到该分类的最佳匹配模式库;
步骤3、对待估计的视差序列进行分块和分类处理,得到每个分类的待估计图库;并将待估计图库与相同分类的最佳匹配模式库进行视差模式匹配,得到待估计的视差序列的预测图。
2.根据权利要求1所述基于分类频率敏感三维自组织映射的视差估计方法,其特征是,步骤1中,根据下式将图像块分高亮度区域和低亮度区域两类,
其中,为图像块的均值,Th为均值判定限值,X1表示高亮度区域集合,X2表示低亮度区域集合。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610317515.3/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种调节3D电视屏幕角度的方法和系统
- 下一篇:一种新型电子猫眼