[发明专利]一种提高重构精度的稀疏系数分解方法有效

专利信息
申请号: 201610098743.6 申请日: 2016-02-23
公开(公告)号: CN105791189B 公开(公告)日: 2019-02-12
发明(设计)人: 廖勇;陈民安;文政 申请(专利权)人: 重庆大学
主分类号: H04L25/03 分类号: H04L25/03;G06F17/16
代理公司: 暂无信息 代理人: 暂无信息
地址: 400044 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 提高 精度 稀疏 系数 分解 方法
【说明书】:

发明为了实现在信号的压缩感知过程中,提高稀疏系数的稀疏度以提高重构精度,提出了一种提高重构精度的稀疏系数分解方法,所述方法包括:通过设定一门限值,对稀疏系数进行变换,将较小值或零位置均赋值为0以提高稀疏系数的稀疏化程度,有利于重构精度的提高;为了减小信息的丢失,再在原始稀疏系数的基础上将较大值位置均赋值为0,然后经变换使部分较小值增大,又可得到另外一组稀疏系数;通过将稀疏系数分解为两组稀疏系数,在提高稀疏系数的稀疏化程度的同时又保证了信息的完整性;由于稀疏系数分解为两组稀疏系数,在压缩感知过程中使得计算量增大,通过对计算量的增大所带来的时间复杂度的影响选择最佳的门限值,以实现门限值自适应。

技术领域

本发明涉及信号处理技术领域,特别涉及在信号的压缩感知过程中重构精度的提高。

背景技术

传统的信号处理过程主要包括采样、压缩、传输和重构这四个部分。一般来说,在奈奎斯特采样定理下得到信号后,可以先将信号变换到某个域上,然后对数据按照一定的压缩编码方法进行压缩,解码段根据相应的算法进行解压缩,然后反变换得到重构信号。而压缩感知原理突破了奈奎斯特采样的瓶颈,用最小的观测数对信号进行压缩采样,实现了信号的降维处理,达到对信号的边采样边压缩,节约了采样和传输的成本。但信号的稀疏性是压缩感知的应用前提,良好的稀疏性能使信号的重构精度大大提高。

信号稀疏表示一般有两种情况,一是信号本身稀疏,即该信号本身只有少数非零值;二是信号本身在时域上并非稀疏,但在某些变换域上是稀疏的。自然界的大多数信号都属于第二种情况。通常用的稀疏变换基有离散余弦变换(Discrete Cosine Transform,DCT)基、离散傅里叶变换(Discrete Fourier Transform,DFT)基、离散小波变换(DiscreteWavelet Tranform,DWT)基、Curvelets基、Gabor基以及冗余字典等。在实际的信号处理过程中,首先根据信号的特点来合理地选择或构造稀疏基,使得信号的稀疏系数个数尽可能少,然后利用观测矩阵ΦM×N对稀疏系数α进行投影,得到观测值Y后,通过重构算法重构出原始信号。

现提出的一些压缩感知方法直接将经投影在变换域上的稀疏系数α进行观测和重构,但由于稀疏系数α往往难以达到绝对稀疏,从而影响了重构精度。本发明在稀疏系数α的基础上,通过对稀疏系数α变换将其分解为两个稀疏系数,在提高了稀疏系数的稀疏化程度的同时又保证了信息的完整性,以提高重构精度。

发明内容

发明目的:为了实现在信号的压缩感知过程中,提高稀疏系数的稀疏度以提高重构精度,本发明提出了一种提高重构精度的稀疏系数分解方法。该方法在稀疏系数α的基础上,通过对稀疏系数α变换将其分解为两个稀疏系数,使得每个稀疏系数都是绝对稀疏的,再分别对每个稀疏系数进行观测重构后将两者合并起来,从而在提高了稀疏系数的稀疏化程度的同时又保证了信息的完整性。

为了实现本发明的目的,其特征包括:

(1)通过设定一门限值,对稀疏系数进行变换,将较小值或零位置均赋值为0以提高稀疏系数的稀疏化程度,有利于重构精度的提高;

(2)为了减小信息的丢失,再在原始稀疏系数的基础上将较大值位置均赋值为0,然后经变换使部分较小值增大,又可得到另外一组稀疏系数;

(3)通过将稀疏系数分解为两组稀疏系数,在提高稀疏系数的稀疏化程度的同时又保证了信息的完整性;

(4)由于稀疏系数分解为两组稀疏系数,在压缩感知过程中使得计算量增大,通过对计算量的增大所带来的时间复杂度的影响选择最佳的门限值,以实现门限值自适应。

本发明的技术方案如下。

1稀疏系数变换

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610098743.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top