[发明专利]一种提高重构精度的稀疏系数分解方法有效
申请号: | 201610098743.6 | 申请日: | 2016-02-23 |
公开(公告)号: | CN105791189B | 公开(公告)日: | 2019-02-12 |
发明(设计)人: | 廖勇;陈民安;文政 | 申请(专利权)人: | 重庆大学 |
主分类号: | H04L25/03 | 分类号: | H04L25/03;G06F17/16 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 400044 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 提高 精度 稀疏 系数 分解 方法 | ||
本发明为了实现在信号的压缩感知过程中,提高稀疏系数的稀疏度以提高重构精度,提出了一种提高重构精度的稀疏系数分解方法,所述方法包括:通过设定一门限值,对稀疏系数进行变换,将较小值或零位置均赋值为0以提高稀疏系数的稀疏化程度,有利于重构精度的提高;为了减小信息的丢失,再在原始稀疏系数的基础上将较大值位置均赋值为0,然后经变换使部分较小值增大,又可得到另外一组稀疏系数;通过将稀疏系数分解为两组稀疏系数,在提高稀疏系数的稀疏化程度的同时又保证了信息的完整性;由于稀疏系数分解为两组稀疏系数,在压缩感知过程中使得计算量增大,通过对计算量的增大所带来的时间复杂度的影响选择最佳的门限值,以实现门限值自适应。
技术领域
本发明涉及信号处理技术领域,特别涉及在信号的压缩感知过程中重构精度的提高。
背景技术
传统的信号处理过程主要包括采样、压缩、传输和重构这四个部分。一般来说,在奈奎斯特采样定理下得到信号后,可以先将信号变换到某个域上,然后对数据按照一定的压缩编码方法进行压缩,解码段根据相应的算法进行解压缩,然后反变换得到重构信号。而压缩感知原理突破了奈奎斯特采样的瓶颈,用最小的观测数对信号进行压缩采样,实现了信号的降维处理,达到对信号的边采样边压缩,节约了采样和传输的成本。但信号的稀疏性是压缩感知的应用前提,良好的稀疏性能使信号的重构精度大大提高。
信号稀疏表示一般有两种情况,一是信号本身稀疏,即该信号本身只有少数非零值;二是信号本身在时域上并非稀疏,但在某些变换域上是稀疏的。自然界的大多数信号都属于第二种情况。通常用的稀疏变换基有离散余弦变换(Discrete Cosine Transform,DCT)基、离散傅里叶变换(Discrete Fourier Transform,DFT)基、离散小波变换(DiscreteWavelet Tranform,DWT)基、Curvelets基、Gabor基以及冗余字典等。在实际的信号处理过程中,首先根据信号的特点来合理地选择或构造稀疏基,使得信号的稀疏系数个数尽可能少,然后利用观测矩阵ΦM×N对稀疏系数α进行投影,得到观测值Y后,通过重构算法重构出原始信号。
现提出的一些压缩感知方法直接将经投影在变换域上的稀疏系数α进行观测和重构,但由于稀疏系数α往往难以达到绝对稀疏,从而影响了重构精度。本发明在稀疏系数α的基础上,通过对稀疏系数α变换将其分解为两个稀疏系数,在提高了稀疏系数的稀疏化程度的同时又保证了信息的完整性,以提高重构精度。
发明内容
发明目的:为了实现在信号的压缩感知过程中,提高稀疏系数的稀疏度以提高重构精度,本发明提出了一种提高重构精度的稀疏系数分解方法。该方法在稀疏系数α的基础上,通过对稀疏系数α变换将其分解为两个稀疏系数,使得每个稀疏系数都是绝对稀疏的,再分别对每个稀疏系数进行观测重构后将两者合并起来,从而在提高了稀疏系数的稀疏化程度的同时又保证了信息的完整性。
为了实现本发明的目的,其特征包括:
(1)通过设定一门限值,对稀疏系数进行变换,将较小值或零位置均赋值为0以提高稀疏系数的稀疏化程度,有利于重构精度的提高;
(2)为了减小信息的丢失,再在原始稀疏系数的基础上将较大值位置均赋值为0,然后经变换使部分较小值增大,又可得到另外一组稀疏系数;
(3)通过将稀疏系数分解为两组稀疏系数,在提高稀疏系数的稀疏化程度的同时又保证了信息的完整性;
(4)由于稀疏系数分解为两组稀疏系数,在压缩感知过程中使得计算量增大,通过对计算量的增大所带来的时间复杂度的影响选择最佳的门限值,以实现门限值自适应。
本发明的技术方案如下。
1稀疏系数变换
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610098743.6/2.html,转载请声明来源钻瓜专利网。