[发明专利]界面自韧化Si3N4/SiC片层陶瓷材料的制备方法有效
| 申请号: | 201510822753.5 | 申请日: | 2015-11-23 |
| 公开(公告)号: | CN105459564B | 公开(公告)日: | 2017-06-16 |
| 发明(设计)人: | 叶枫;刘仕超;张浩谦;张标;刘强;高烨 | 申请(专利权)人: | 哈尔滨工业大学 |
| 主分类号: | B32B37/06 | 分类号: | B32B37/06;B32B37/10;B32B9/04;B32B9/00;C04B35/622;C04B35/64;C04B35/565;C04B35/584 |
| 代理公司: | 哈尔滨市松花江专利商标事务所23109 | 代理人: | 侯静 |
| 地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 界面 si sub sic 陶瓷材料 制备 方法 | ||
1.界面自韧化Si3N4/SiC片层陶瓷材料的制备方法,其特征在于界面自韧化Si3N4/SiC片层陶瓷材料的制备方法按照以下步骤进行:
一、陶瓷浆料的制备:在固相含量为50wt%、聚丙烯酸含量为0.6wt%、在pH值为9-11的条件下将Si3N4陶瓷粉体或SiC陶瓷粉体与聚丙烯酸混合12小时,加入Si3N4陶瓷粉体或SiC陶瓷粉体质量4%的聚乙烯醇和Si3N4陶瓷粉体或SiC陶瓷粉体8wt%甘油,混合1-2小时后,加入正丁醇进行真空除泡,直到浆料中无气泡冒出为止;
二、将步骤一中得到浆料倾倒在玻璃基板上进行流延成型,流延成型速度为10cm/min,将流延后的浆料在室温条件下干燥,得到Si3N4生带或SiC生带;
三、将Si3N4生带与SiC生带交替叠压,厚度为100μm-500μm,在70℃-90℃、40MPa-60MPa的条件下叠压,并在Si3N4生带与SiC生带间铺设一层烧结助剂生带,然后以0.5-1℃/min升温至210℃-220℃,并保温0.5-1.5小时,之后以0.5-1℃/min升温至620℃-700℃,保温1.5-2.5小时,即得Si3N4/SiC片层复合材料生坯;
四、将Si3N4/SiC片层复合材料生坯在N2为烧结气氛、气压为1-2MPa的条件下,以5-15℃/min的升温速度升温至900℃-1100℃,并保温0.5-1.5小时,再以5-15℃/min的升温速度升温至1600-2000℃,保温1.5-2.5小时,得到界面自韧化Si3N4/SiC片层陶瓷材料。
2.根据权利要求1所述界面自韧化Si3N4/SiC片层陶瓷材料的制备方法,其特征在于步骤三中所述的烧结助剂为Y2O3和Al2O3的混合物,其中Y2O3与Al2O3的摩尔比为3:2。
3.根据权利要求1或2所述界面自韧化Si3N4/SiC片层陶瓷材料的制备方法,其特征在于步骤一中混合时间为1.5小时。
4.根据权利要求1或2所述界面自韧化Si3N4/SiC片层陶瓷材料的制备方法,其特征在于步骤一中所述的pH值为10。
5.根据权利要求1或2所述界面自韧化Si3N4/SiC片层陶瓷材料的制备方法,其特征在于步骤二中干燥时间为12小时。
6.根据权利要求1或2所述界面自韧化Si3N4/SiC片层陶瓷材料的制备方法,其特征在于步骤三中在80℃、50MPa的条件下叠压。
7.根据权利要求1或2所述界面自韧化Si3N4/SiC片层陶瓷材料的制备方法,其特征在于步骤三中以0.5℃/min升温至215℃,并保温1小时,之后以0.5℃/min升温至650℃,保温2小时。
8.根据权利要求1或2所述界面自韧化Si3N4/SiC片层陶瓷材料的制备方法,其特征在于步骤四中所述的气压为1.5MPa。
9.根据权利要求1或2所述界面自韧化Si3N4/SiC片层陶瓷材料的制备方法,其特征在于步骤四中以10℃/min的升温速度升温至1000℃,并保温1小时。
10.根据权利要求1或2所述界面自韧化Si3N4/SiC片层陶瓷材料的制备方法,其特征在于步骤四中再以10℃/min的升温速度升温至1800℃,保温2小时。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510822753.5/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种具有射频读写功能的纸张
- 下一篇:真空履带引纸装置
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法





