[发明专利]用于音频事件分类的半监督学习高置信度样本挖掘方法有效

专利信息
申请号: 201510475266.6 申请日: 2015-08-05
公开(公告)号: CN105069474B 公开(公告)日: 2019-02-12
发明(设计)人: 冷严;李登旺;方敬;程传福;万洪林;王晶晶 申请(专利权)人: 山东师范大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 张勇
地址: 250014 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 用于 音频 事件 分类 监督 学习 置信 样本 挖掘 方法
【权利要求书】:

1.一种用于音频事件分类的半监督学习高置信度样本挖掘方法,其特征是:包括以下步骤:

步骤(1):输入已标注音频事件样本集L、未标注音频事件样本集U和支持向量机分类器;

步骤(2):用已标注音频事件样本集L中标注为正类的样本组成样本集L+,用未标注音频事件样本集U和样本集L+组成包含未标注音频事件样本和已标注的正类样本的数据集D1,用D1内的样本估计未标注音频事件样本的正类置信度;

步骤(3):用已标注音频事件样本集L中标注为负类的样本组成样本集L-,用未标注音频事件样本集U和样本集L-组成包含未标注音频事件样本和已标注的负类样本的数据集D2,用D2内的样本估计未标注音频事件样本的负类置信度;

步骤(4):对未标注音频事件样本,计算正类估计置信度和负类估计置信度的差值g1,用支持向量机分类器对未标注音频事件样本分类,然后选出那些落在支持向量机分类器分类边界内且其g1值为正值的未标注音频事件样本,并按其g1值进行降序排列,最后创建正类样本集P;

步骤(5):对未标注音频事件样本,计算负类估计置信度和正类估计置信度的差值g2,用支持向量机分类器对未标注音频事件样本分类,然后选出那些落在支持向量机分类器分类边界内且其g2值为正值的未标注音频事件样本,并按其g2值进行降序排列,最后创建负类样本集N;

步骤(6):将正类样本集P中的样本自动标注为正类,然后加入到已标注音频事件样本集L中,并将其从未标注音频事件样本集U中移除;将负类样本集N中的样本自动标注为负类,然后加入到已标注音频事件样本集L中,并将其从未标注音频事件样本集U中移除,利用处理后的音频事件样本集进行音频事件分类。

2.如权利要求1所述的一种用于音频事件分类的半监督学习高置信度样本挖掘方法,其特征是:所述步骤(2)的方法为:用已标注音频事件样本集中标注为正类的样本组成样本集L+,用未标注音频事件样本集U和样本集L+组成包含未标注音频事件样本和已标注的正类样本的数据集D1,g+表示D1中样本的正类估计置信度组成的列向量,r+表示D1中样本的正类先验置信度组成的列向量,设置r+中各个样本的正类先验置信度,用D1中的样本估计未标注音频事件样本的正类置信度。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东师范大学,未经山东师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510475266.6/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top