[发明专利]一种α-NaYF4单晶体的生长方法在审
申请号: | 201410556977.1 | 申请日: | 2014-10-15 |
公开(公告)号: | CN104264223A | 公开(公告)日: | 2015-01-07 |
发明(设计)人: | 夏海平;杨硕;姜永章;张加忠;符立;董艳明;李珊珊;张约品 | 申请(专利权)人: | 宁波大学 |
主分类号: | C30B29/12 | 分类号: | C30B29/12;C30B11/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 315211 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 nayf sub 单晶体 生长 方法 | ||
1.一种α-NaYF4单晶体的生长方法,其特征在于包括下述步骤:
1)、按摩尔比1~2.40∶1∶2.24~3.40,把NaF、KF、YF3原料置于碾磨器中,碾磨混合5~6h,得到均匀粉末的混合料;
2)、将上述混合料置于铂金坩锅中,铂金坩锅安装于管式电阻炉的铂金管道中,然后用N2气排除铂金管道中的空气,在温度780~800℃,通HF气下,反应处理1~5小时,反应处理结束,关闭HF气体与管式电阻炉,用N2气清洗管道中残留的HF气体,所有经管道尾端的残余HF气体由NaOH溶液回收,最终得到多晶粉料;
3)、以KF作为助熔剂,采用密封坩锅下降法进行晶体生长,将上述多晶粉料置于碾磨器磨成粉末,然后置于Pt坩埚中并压实,密封Pt坩埚;
4)、将密封的Pt坩埚置于硅钼棒炉中,用坩埚下降法生长晶体,生长晶体的参数为:炉体温度为950~980℃,接种温度为820~860℃,固液界面的温度梯度为50~90℃/cm,坩锅下降速度为0.2~2.0mm/h,在晶体生长结束后,以20~80℃/h下降炉温至室温,得到α-NaYF4单晶体。
2.如权利要求1所述的一种α-NaYF4单晶体的生长方法,其特征在于所述的步骤1)中NaF、KF、YF3原料按摩尔比1∶1∶2.24混合,所述的步骤4)中固液界面的温度梯度为50℃/cm。
3.如权利要求1所述的一种α-NaYF4单晶体的生长方法,其特征在于所述的步骤1)中NaF、KF、YF3原料按摩尔比2.40∶1∶3.40混合,所述的步骤4)中固液界面的温度梯度为90℃/cm。
4.如权利要求1所述的一种α-NaYF4单晶体的生长方法,其特征在于所述的步骤1)中NaF、KF、YF3的纯度均大于99.99%。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于宁波大学,未经宁波大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410556977.1/1.html,转载请声明来源钻瓜专利网。
- 静电纺丝-溶剂热相结合制备NaYF<sub>4</sub>/TiO<sub>2</sub>/Bi<sub>2</sub>WO<sub>6</sub>:Ln<sup>3+</sup>复合纤维的方法
- 一种核壳壳结构的纳米晶体的制备方法
- 用于白光LED的Dy<sup>3+</sup>掺杂α-NaYF<sub>4</sub>单晶体的制备方法
- 一种提高上转换纳米材料量子产率的方法
- 一种TiO<sub>2</sub>/NaYF<sub>4</sub>复合材料及其制备方法
- 一种制备8纳米以下稀土掺杂β-NaYF<sub>4</sub>上转换纳米晶的方法
- 一种核-壳结构的上转换发光材料及其制备方法
- 一种稳固的NaYF<base:Sub>4
- 一种上转换光催化材料及其制备方法和应用
- 一种Al<sup>3+</sup>掺杂的六方相NaYF<sub>4</sub>:Yb;Er上转换材料的制备方法
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法