[发明专利]分布式压缩感知中充分稀疏源信号的交替迭代估计方法有效

专利信息
申请号: 201410155538.X 申请日: 2014-04-17
公开(公告)号: CN103929186B 公开(公告)日: 2017-06-16
发明(设计)人: 徐红伟;付宁;殷聪如;张毅刚;彭喜元 申请(专利权)人: 哈尔滨工业大学
主分类号: H03M7/30 分类号: H03M7/30
代理公司: 哈尔滨市松花江专利商标事务所23109 代理人: 杨立超
地址: 150001 黑龙*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 分布式 压缩 感知 充分 稀疏 信号 交替 估计 方法
【说明书】:

技术领域

发明涉及分布式压缩感知领域以及盲源分离领域,具体涉及在分布式压缩感知信号处理框架下,从混合信号的观测值恢复充分稀疏源信号的方法。

背景技术

传统的信号采样一般都基于奈奎斯特采样定理,即采样速率至少需要大于信号最高频率的2倍,才能利用采样得到的离散数据不失真的分离得到源信号。但是随着信息技术的发展,以奈奎斯特采样定理为基础的信号处理框架对前端模数转换器(ADC)的采样速率和处理速度提出了更高的要求,也对后端信息的传输、存储环节带来了巨大的挑战。

压缩感知(Compressed Sensing,CS)理论是在2004年由Candès和Donoho等人提出的。该理论指出,当信号满足稀疏性时,能以远低于奈奎斯特采样频率的速度对源信号进行全局观测,然后采用合适的重构算法精确重构出源信号。CS理论将采样和压缩合并成一步进行,极大的降低了信号的采样频率以及数据的传输、存储代价。若考虑稀疏度为K且长度为N的离散实信号x,即x满足:

x∈RN,||x||0≤K<<N (1)

其中||.||0表示信号的l0范数,即信号值不为零的个数。

令y为信号x的M次观测,则具体的压缩观测模型如式(2)所示,

y=Φx (2)

其中,y是长度为M的观测信号,Φ为M×N维的观测矩阵。当观测矩阵满足RIP(Restricted Isometry Property)条件时,即可用l0范数意义下的优化问题来重构或者逼近源信号。即

argmin||x||0,s.t.y=Φx (3)

RIP条件:对于任意的q∈R|I|,且|I|≤K,以及K≤m,0≤δ≤1,如果有式(4)成立,则称观测矩阵满足RIP条件。其中ΦI为观测矩阵Φ中由索引I所指示的相关列组成大小为m×|I|的子矩阵空间。

近年来,随着网络通信、多媒体技术、存储技术的发展,网络规模的越来越大,人们对分布式信息处理技术等先进技术的需求越来越迫切。压缩感知理论一般是应用于单信号场景,D.Baron等人充分发掘了多通道信号的信号内和信号间的相关性结构,提出了分布式压缩感知(Distributed Compressive Sensing,DCS)理论。在DCS信号处理框架下,先对各通道信号进行独立的CS观测,然后利用观测值采用联合重构算法恢复出源信号。在实际的分布式的场景下,传感器往往接收到的是多个信号的混合信号,并且源信号以及混合信号均是未知的。如果利用混合信号之间的相关性,采用现有的分布式压缩感知重构算法求解,我们仅仅能得到混合信号的估计值。但是,人们往往对源信号更感兴趣,而非混合信号。因此,分布式压缩感知框架下,研究从混合信号中估计源信号的方法是十分有必要的。

目前,通用的在分布式压缩感知框架下,利用混合信号的观测值恢复源信号的方法如说明书附图图1所示。图中的“盲源分离”过程,也是现在的一个研究热点,主要研究如何从混合信号中恢复源信号及混合参数。利用CS采样,在不降低源信号的恢复精度的前提下,可以很大程度的缓解对硬件的采样速度以及传输带宽的压力。

图1中的S=[S1 S2...SJ]T表示J个长度为N的源信号,混合系统可以用P×J维矩阵A表示,CS观测系统可以用观测矩阵Φ表示。则混合信号X可以表示为式(5),观测信号Y可以表示为式(6)。

X=AS(5)

Y=ΦXT (6)

由图1可知,通用的基于压缩感知的源信号估计方法主要包括两个步骤:

步骤一、采用现有的CS重构方法对混合信号进行重构,得到混合信号的估计值

步骤二、结合现有的盲源分离算法,对混合信号分离,得到源信号的估计值

由于压缩感知理论应用的前提是信号满足稀疏性或者可压缩性。根据源信号的稀疏程度,稀疏信号又可以分为充分稀疏源信号和非充分稀疏源信号。充分稀疏源信号是指多个源信号在同一时刻只有一个源信号非零,其他源信号为零或者趋近于零。非充分稀疏源信号是指源信号在同一时刻不止一个源信号的取值为零。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410155538.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top