[发明专利]将实体与类别相关联在审

专利信息
申请号: 201410119954.4 申请日: 2009-09-14
公开(公告)号: CN103927615A 公开(公告)日: 2014-07-16
发明(设计)人: 裴忠顺;伍庆;崔贤影;维维克·拉古纳坦 申请(专利权)人: 谷歌公司
主分类号: G06Q10/06 分类号: G06Q10/06;G06Q30/02
代理公司: 中原信达知识产权代理有限责任公司 11219 代理人: 周亚荣;安翔
地址: 美国加利*** 国省代码: 美国;US
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 实体 类别 相关
【说明书】:

分案说明

本申请属于申请日为2009年9月14日并且申请号为No.200980145280.2的中国专利申请的分案申请。

相关申请

本申请要求于2009年2月26日提交的、题为ASSOCIATING AN ENTITY WITH A CATEGORY(将实体与类别相关联)的美国申请序列号No.12/393,361,以及于2008年9月15日提交的美国临时专利申请序列号No.61/097,026的优先权,特此通过引用合并所述美国申请的全部内容。

技术领域

本文档涉及信息处理。

背景技术

广告主可以在多个不同平台中的任何平台上运行广告活动,所述多个不同平台包括因特网、电视、无线电广播以及广告牌。在广告活动中所使用的广告可以覆盖产品和服务的范围,并且可以定向特定受众或更一般地定向更大人群。例如,运行网站的发布者可以向广告主提供空间用于呈现广告。呈现在网站上的广告有时基于网站的内容来选择。

发明内容

本发明涉及将实体与类别相关联。

在第一方面中,一种用于将实体与类别相关联的计算机实现的方法包括为多个类别中的至少子集中的每一个确定概率值,所述概率值表示识别的实体属于相应类别的可能性并且使用关于实体的信息来确定。该方法包括为实体记录多个类别中的一个类别,类别使用概率值和用于多个类别的规则集来识别。

实施方式可以包括以下特征中的任何、全部特征或不包括以下特征。实体可以是被识别为加入在程序中的内容提供者,在所述程序中内容提供者提供待由至少一个发布者发布的内容,以及概率值可以使用与内容提供者相关联的至少一个关键词以及与内容提供者相关联的至少一个财务值来确定。确定概率值可以包括将至少一个关键词至少映射到多个类别的子集;用至少一个财务值对至少子集赋予权重,其中财务值已被分配给对应关键词;以及选择预定数量的类别作为子集。规则集可以基于训练数据。规则集可以包括决策树,其被配置用于通过处理包括在决策树中的多个决策中的至少部分来选择多个类别中的一个。该方法可以进一步包括使用训练数据来生成决策树,其中训练数据包括实体到多个类别中的一个或多个的映射。生成决策树可以进一步包括使用有关实体的财务数据对映射赋予权重。对映射赋予权重可以进一步包括基于与映射的至少子集相对应的财务数据来过采样(oversample)映射的所述子集。生成决策树可以包括选择用于决策树的结构;确定决策树的延伸区(extent),包括在选择多个类别中的一个之前待进行的多个决策中的决策数量;以及确定待在多个决策中使用的阈值。可以迭代生成决策树。内容提供者可以从事于广告,以及多个类别可以包括内容提供者待与之匹配的垂直元(vertical)。生成决策树可以进一步包括识别垂直元中的至少一个,对于其概率值的确定具有将垂直元不恰当地分配给内容提供者的倾向;以及选择阈值中的至少一个,使得降低所述倾向。该方法可以进一步包括基于已为实体识别的类别向用户呈现信息。信息可以指示与类别相关联的季节性。

在第二方面中,一种计算机系统包括第一分类器,其为多个类别中的至少子集中的每一个类别确定概率值,所述概率值表示识别的实体属于相应类别的可能性并且使用关于实体的信息来确定。该系统包括第二分类器,其使用概率值和用于多个类别的规则集来为实体识别多个类别中的一个类别。

实施方式可以包括以下特征中的任何、全部特征或不包括以下特征。规则集可以基于训练数据。第一分类器在确定概率值时可以考虑与实体有关的财务值。规则集可以包括决策树,其被配置用于通过处理包括在决策树中的多个决策中的至少部分来选择多个类别中的一个,以及该计算机系统可以进一步包括使用训练数据来生成决策树的规则组件,其中训练数据包括实体到多个类别中的一个或多个的映射。规则组件可以使用有关实体的财务数据对映射赋予权重,包括基于与映射的至少子集相对应的财务数据来过采样映射的所述子集。该系统可以进一步包括前端组件,其基于第二分类器已为实体识别了类别向用户呈现信息。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于谷歌公司,未经谷歌公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410119954.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top