[发明专利]一种基于区域的图像显著图提取方法有效

专利信息
申请号: 201310651864.5 申请日: 2013-12-05
公开(公告)号: CN103632153B 公开(公告)日: 2017-01-11
发明(设计)人: 邵枫;姜求平;蒋刚毅;郁梅;李福翠;彭宗举 申请(专利权)人: 宁波大学
主分类号: G06K9/46 分类号: G06K9/46;G06T5/50;G06T7/00
代理公司: 宁波奥圣专利代理事务所(普通合伙)33226 代理人: 周珏
地址: 315211 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 区域 图像 显著 提取 方法
【说明书】:

技术领域

发明涉及一种图像信号的处理方法,尤其是涉及一种基于区域的图像显著图提取方法。

背景技术

在人类视觉接收与信息处理中,由于大脑资源有限以及外界环境信息重要性区别,在处理过程中人脑对外界环境信息并不是一视同仁的,而是表现出选择特征。人们在观看图像或者视频片段时注意力并非均匀分布到图像的每个区域,而是对某些显著区域关注度更高。如何将视频中视觉注意度高的显著区域检测并提取出来是计算机视觉以及基于内容的视频检索领域的一个重要的研究内容。

现有的显著图模型是一种模拟生物体视觉注意机制的选择性注意模型,其通过计算每个像素点在颜色、亮度、方向方面与周边背景的对比,并将所有像素点的显著值构成一张显著图,然而这类方法并不能很好地提取图像显著图信息,这是因为基于像素的显著特征并不能很好地反映人眼观看时的显著语义特征,而基于区域的显著特征能够有效地提高提取的稳定性和准确性,因此,如何对图像进行区域分割,如何对各个区域的特征进行提取,如何对各个区域的显著特征进行描述,如何度量区域本身的显著度和区域与区域之间的显著度,都是对基于区域的显著图提取中需要研究解决的问题。

发明内容

本发明所要解决的技术问题是提供一种符合显著语义特征,且有较高提取稳定性和准确性的基于区域的图像显著图提取方法。

本发明解决上述技术问题所采用的技术方案为:一种基于区域的图像显著图提取方法,其特征在于包括以下步骤:

①将待处理的源图像记为{Ii(x,y)},其中,i=1,2,3,1≤x≤W,1≤y≤H,W表示{Ii(x,y)}的宽,H表示{Ii(x,y)}的高,Ii(x,y)表示{Ii(x,y)}中坐标位置为(x,y)的像素点的第i个分量的颜色值,第1个分量为R分量、第2个分量为G分量和第3个分量为B分量;

②首先获取{Ii(x,y)}的量化图像及量化图像的全局颜色直方图,然后根据{Ii(x,y)}的量化图像,获取{Ii(x,y)}中的每个像素点的颜色种类,再根据{Ii(x,y)}的量化图像的全局颜色直方图和{Ii(x,y)}中的每个像素点的颜色种类,获取{Ii(x,y)}的基于全局颜色直方图的图像显著图,记为{HS(x,y)},其中,HS(x,y)表示{HS(x,y)}中坐标位置为(x,y)的像素点的像素值,亦表示{Ii(x,y)}中坐标位置为(x,y)的像素点的基于全局颜色直方图的显著值;

③采用超像素分割技术将{Ii(x,y)}分割成M个互不重叠的区域,然后将{Ii(x,y)}重新表示为M个区域的集合,记为{SPh},再计算{SPh}中的各个区域之间的相似性,将{SPh}中的第p个区域与第q个区域之间的相似性记为Sim(SPp,SPq),其中,M≥1,SPh表示{SPh}中的第h个区域,1≤h≤M,1≤p≤M,1≤q≤M,p≠q,SPp表示{SPh}中的第p个区域,SPq表示{SPh}中的第q个区域;

④根据{SPh}中的各个区域之间的相似性,获取{Ii(x,y)}的基于区域颜色对比度的图像显著图,记为{NGC(x,y)},其中,NGC(x,y)表示{NGC(x,y)}中坐标位置为(x,y)的像素点的像素值;

⑤根据{SPh}中的各个区域之间的相似性,获取{Ii(x,y)}的基于区域空间稀疏性的图像显著图,记为{NSS(x,y)},其中,NSS(x,y)表示{NSS(x,y)}中坐标位置为(x,y)的像素点的像素值;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于宁波大学,未经宁波大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310651864.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top