[发明专利]一种基于伪逆自适应算法的压缩感知图像重构方法有效
| 申请号: | 201310279537.1 | 申请日: | 2013-07-04 |
| 公开(公告)号: | CN103337087A | 公开(公告)日: | 2013-10-02 |
| 发明(设计)人: | 李晖晖;曾艳;郭雷 | 申请(专利权)人: | 西北工业大学 |
| 主分类号: | G06T11/00 | 分类号: | G06T11/00 |
| 代理公司: | 西北工业大学专利中心 61204 | 代理人: | 王鲜凯 |
| 地址: | 710072 *** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 自适应 算法 压缩 感知 图像 方法 | ||
1.一种基于伪逆自适应算法的压缩感知图像重构方法,其特征在于步骤如下:
步骤1、投影测量:对于一幅维数为N×K的原始图像A,选择一个维数为M×N,且M≤N的高斯随机矩阵Φ对图像A进行投影测量,得到一个测量信号矩阵Y=Φ·A;所述高斯随机矩阵Φ的每一个元素都服从均值为0、方差为的高斯分布;并且Φ的维数满足M≤N,得到的测量信号矩阵Y的维数为M×K,低于原始图像A的维数;
步骤2、构造图像的稀疏基:以图像的行数构造一个维数为N×N的离散余弦基Ψ作为图像的稀疏基;
离散余弦基Ψ的构造公式为:
其中:m和k表示从0到N-1、包括0和N-1的整数值,C(k)表示构造每一个矩阵元素时的系数值,cos(·)表示对括号内的变量求余弦,[·]NXN表示一个N×N维的矩阵;
步骤3、利用PIAMP重构图像每一列的稀疏系数:
步骤3:提取步骤1中得到的测量信号矩阵Y的每一列作为一维信号单独进行重构处理;以yi表示矩阵Y的第i列,1≤i≤K,θi表示重构出图像第i列的稀疏系数,寻找每一列稀疏系数的具体过程如下:
(a)初始化参数设置:首先利用高斯随机矩阵Φ和离散余弦基Ψ的乘积求得图像的重构字典D=Φ·ψ;然后设置重构θi过程中控制阶段转换的阈值为ε1,每一次迭代得到的余量为r,且初始余量为yi,设置θi初始的稀疏度估计为p,第一次筛选中从重构字典D中所选择列向量的个数S=p,并令迭代过程中存放从重构字典D中所选列向量列号的集合L、J0、J1都为空集;
(b)伪逆处理:将步骤(a)得到的重构字典D进行伪逆处理得到的矩阵Ω,
Ω=D+=(D·DT)-l·D
其中D+表示对矩阵D求伪逆,符号DT表示对矩阵D求转置,(·)-1表示对括号内的矩阵求逆运算;
(c)第一次筛选:首先通过求内积的方式来获得Ω中每一个列向量wj(1≤j≤N)和余量r的相关系数uj=|rT·wj|,以表示每一个列向量与余量的相关度,其中|·|表示求绝对值符号;然后将求得的uj由大至小排序,从中找出前S个值的索引值,并将其存入集合J0;
(d)第二次筛选:首先将集合J0中索引值对应的相关系数进行正则化处理,然后将处理得到的相关系数所对应的索引值放入集合J1,并令L=L∪J1;
(e)阶段转换:利用下述两个公式求得本次迭代中所得到的稀疏系数θnew和余量r1,
θnew=(DL)+·y
r1=y-DLθnew
其中DL是由矩阵D所构成的矩阵,其维数与D相同,且集合L中索引值所对应矩阵DL的列向量与D相同;
然后检查||θnew-θpre||2≤ε1是否满足,若满足则停止迭代,令θi=θnew;否则继续判断||θnew-θpre||2≤5ε1是否满足,若满足则说明迭代过程已趋于停止,此时令θpre=θnew,r=r1,S=S+p/3,返回步骤(c)继续进行迭代;否则进一步判断||r1||2≤||r||2是否满足,若满足则令θpre=θnew,r=r1,且返回步骤(c),否则令θpre=θnew,r=r1,S=S+p,再返回步骤(c),直到搜寻出θi;其中θpre表示上次迭代过程得到的稀疏系数;
步骤4:稀疏系数变换:将步骤3中搜索出的θi按照i的顺序进行排列,以得到一个维数为N×K的图像稀疏矩阵Θ;然后利用离散余弦基Ψ进行变换求得重构图像
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310279537.1/1.html,转载请声明来源钻瓜专利网。
- 上一篇:用于圆盘剪的废边导向装置
- 下一篇:一种旋转装置





