[发明专利]一种快速路短时交通流实时预测的方法无效
申请号: | 201310019648.9 | 申请日: | 2013-01-18 |
公开(公告)号: | CN103116808A | 公开(公告)日: | 2013-05-22 |
发明(设计)人: | 马云龙;王坚 | 申请(专利权)人: | 同济大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04 |
代理公司: | 隆天国际知识产权代理有限公司 72003 | 代理人: | 张龙哺;吕俊清 |
地址: | 200092 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 快速路 短时交 通流 实时 预测 方法 | ||
技术领域
本发明涉及一种智能交通仿真与预测领域。
背景技术
及时、准确地预测未来短时间内(一般认为,不超过15分钟,甚至小于5分钟)的交通流状况,是制定正确诱导和控制措施的一个重要前提,也是目前广泛开展的智能运输系统(Intelligent Transportation System,ITS)项目开发研究的基本要求。从20世纪60年代开始,人们就开始把其他领域应用成熟的预测模型用于短时交通流预测领域,并开发了多种预测模型和方法。较早期的预测方法主要有:自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)、历史平均模型(HA)和Box-Cox法等等。随着该领域研究的逐渐深入,又出现了一批更复杂的、精度更高的预测方法。大体来说,这些模型可分成五类:基于统计理论的模型、基于非线性预测理论的模型、基于神经网络理论的模型、基于动态分配理论的模型和基于微观交通仿真的模型。
统计理论的模型因为要做统计分析的假设,因此未能反映交通流过程的不确定性与非线性,尤其无法克服随机干扰因素的影响;神经网络理论的模型因其参数训练非常复杂,计算时间太长,所需数据量大且数据平衡性要求高,不适合在线应用;已有的动态交通分配模型普遍存在优化计算时间过长,预测的实时性差,需要在实践中难于做到或无法做到的动态OD信息,而且由于采用递推方式的计算,造成了误差的积累,使得分配结果的可靠度降低。
目前在国内的大型城市基本都已建设了先进的智能交通系统,可以通过视频以及数据,实时地掌握随城市的交通运行状况。但是,仍然无法解决高峰时段城市交通资源分配不均匀的问题,特别是当发生紧急交通事件的时候,交通管理者需要尽快地选择处理的预案,这就需要我们以交通态势信息为基础,对交通态势的仿真,预测出一段时间后各种预案的处理效果,为管理者的决策给出科学的依据。微观交通仿真预测方法利用微观仿真原理对未来数分钟之内的道路交通状态进行仿真,预测所仿真路段的交通流状态,该方法能够快速的对实时的交通状况进行预测。本发明基于微观交通仿真方法,以城市快速路为研究对象,通过实时采集的交通数据,对未来的短时间内的交通状态进行预测。
发明内容
针对现有技术中的技术缺陷,本发明提供一种快速路短时交通流实时预测的方法,其特征在于,包括:a.实时采集待仿真路段的交通数据;b.根据所述交通数据选择一车辆产生模型来将车辆分布到所述待仿真路段上;c.根据所述交通数据计算OD矩阵并根据所述OD矩阵分配所述待仿真路段的交通出行量;d.根据所述交通出行量和基于所述交通数据的一车辆行驶行为模型对所述待仿真路段的运动数据进行预测。
优选地,所述交通数据由分布在待仿真路段的线圈检测获得。
优选地,所述交通数据由分布在待仿真路段的检测摄像头获得。
优选地,所述交通数据包括以下的一个或多个:车辆类型;车辆平均速度;时间占有率;流入交通量;以及流出交通量。
优选地,所述车辆产生模型通过如下步骤选择:据所述交通数据将待仿真路段进行分为畅通路段和拥挤路段;若所述待仿真路段为畅通路段,则所述车辆产生模型为一负指数车头时距分布模型;若所述待仿真路段为拥挤路段,则所述车辆产生模型为一M3车头时距分布模型分布。
优选地,根据所述车辆产生模型确定所述车头时距后将车头时距离散化分布到所述待仿真路段上。
优选地,所述OD矩阵根据如下步骤计算:通过迭代算法对改进极大熵模型求解得到所述OD矩阵,其公式如下所示:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310019648.9/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种铝塑板折弯机
- 下一篇:一种通知栏消息的处理方法、装置和系统
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理