[发明专利]一种针对羽毛球比赛视频的精彩镜头识别方法有效

专利信息
申请号: 201210230107.6 申请日: 2012-07-04
公开(公告)号: CN102890781A 公开(公告)日: 2013-01-23
发明(设计)人: 李炜;李进;齐翔;钟沛珉 申请(专利权)人: 北京航空航天大学
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 暂无信息 代理人: 暂无信息
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 针对 羽毛球 比赛 视频 精彩镜头 识别 方法
【说明书】:

技术领域

发明涉及一种针对羽毛球比赛视频的精彩镜头识别方法,属于计算机视觉技术领域。

背景技术

随着网络技术的发展和光学采集设备的普及,视频的数据量快速增长,如何在视频中比较快的找到感兴趣的内容是一个十分有意义的研究问题。体育比赛视频具有自身的特点,场景变化比较规律,有利于进行分析,所以体育比赛视频分析是视频分析中的热门研究方向。羽毛球是我国的传统优势项目,有着广大的观影人群。现在的羽毛球比赛视频非常之多,如果能将羽毛球比赛视频中最精彩的部分寻找出来,并提供给观众,无疑会提高人们观看羽毛球比赛的便利程度。

现有的羽毛球比赛视频中高级语义分析(包含精彩镜头识别)的方法主要有:

1)基于运动目标检测的方法。首先检测到比赛视频中的运动目标,进而分析运动目标的动作、运动方向等,从而找出比赛中的精彩部分。在运动目标的动作分析等方面,现在还没有很理想的动作分析方法,准确率不够高,且计算复杂度大。

2)基于慢镜头检测的方法。在体育比赛当中,精彩的镜头往往会用慢速播放方式从不同视角重复播放几次。因此,重放场景的检测对于精彩镜头具有重要的提示作用,并且慢镜头和正常的比赛视频之间存在编辑特效,如渐变、徽标等。

3)多模态融合的方法。基于单模态特征的方法只利用了视觉、听觉或者文本三者之一的信息来判断和处理视频,没有充分利用其他信息。多模态信息本质上是由文本、音频、视频等多种模态组合而成,综合运用多模态特征才能完整表示多媒体所蕴含的语义信息。采用多模态分析方法的关键是要找出模态之间的相互联系。

现有的方法存在一些不足:现有的方法一般都是针对所有的视频,而专门针对羽毛球比赛视频的算法很少。羽毛球比赛视频场景变化比较有规律,运动员的人数也比较固定,能结合羽毛球比赛专业知识的分析方法很少。

发明内容

本发明的目的是提供一种识别羽毛球比赛视频中精彩镜头的方法,该方法在找出羽毛球比赛视频中所有的全场比赛镜头的前提下,进行羽毛球比赛视频的高级语义分析;在高级语义分析阶段,进行运动员的检测与跟踪,并分析运动员的动作、运动量以及每个回合的比赛时间;在此基础上通过综合分析,定义了镜头的精彩度,即以下四个因素的加权平均值:运动量、由运动员轮廓识别的救球次数、由运动员轮廓识别的扣球次数、由角点运动轨迹识别的扣球次数;精彩度的值越大,表明镜头越精彩;最后选出精彩度最大的几个镜头作为最精彩镜头;

为实现上述目的,本发明采用下述的技术方案,其特征在于包括以下步骤:

步骤一,运动员检测与识别:对原始羽毛球比赛视频进行处理,找到其中所有的全场比赛镜头,并进行运动员的检测与跟踪,提取运动员的轮廓;

步骤二,运动员轮廓分析:将步骤一提取的运动员轮廓用外切矩形框标出,通过判断所述矩形框对角线的斜率来识别可能的运动员扣球镜头与救球镜头,斜率大于一定的阈值判定为扣球镜头,斜率小于一定的阈值判定为救球镜头;

步骤三,运动员光流场分析:识别步骤一中获得的羽毛球比赛视频中全场比赛镜头视频帧的角点,对所述角点进行追踪,角点的运动轨迹形成一个光流场;

步骤四,光流场聚类分析:将步骤三中得到的光流场用线段标出,作为运动员的运动轨迹,将这些运动轨迹进行聚类,并计算每一类运动轨迹的平均斜率,若斜率大于一定的阈值,则认为对应视频帧中可能存在精彩的扣球镜头;

步骤五,比赛镜头的时间长度分析:利用镜头场景的变化来判断比赛回合,通过每一回合的视频帧数和帧率得出每个回合的时间;

步骤六,运动员运动量分析:计算步骤二中所述矩形框的中心点,由中心点的运动轨迹获得相邻几帧中运动员的位移量,作为相应的运动量;

步骤七,精彩镜头判断:利用一个镜头的四个特征来表示该镜头的精彩度,所述四个特征分别是:镜头的运动量d1、镜头救球的次数d2、镜头内由运动员轮廓识别的扣球次数d3、镜头内由角点识别的运动员的扣球次数d4,采用公式(1)对镜头的运动量d1进行归一化:

M=d1/frameWidth*10                         (1)

其中,M表示归一化后的运动量,frameWidth表示视频帧的宽度;

利用公式(2)计算镜头的精彩度:

C=σ1M+σ2d23d34d4                  (2)

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210230107.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top