[发明专利]一种基于显著图解释多被试复数fMRI数据CNN分类结果的方法在审
申请号: | 202111480785.3 | 申请日: | 2021-12-06 |
公开(公告)号: | CN114239705A | 公开(公告)日: | 2022-03-25 |
发明(设计)人: | 林秋华;牛妍炜 | 申请(专利权)人: | 大连理工大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;A61B5/055;A61B5/00;G06V10/764;G06V10/774;G06V10/82 |
代理公司: | 辽宁鸿文知识产权代理有限公司 21102 | 代理人: | 王海波 |
地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于显著图解释多被试复数fMRI数据CNN分类结果的方法,属于生物医学信号处理领域。将单被试的切片样本送入一个训练好的CNN模型获得卷积层输出的特征图,将多通道特征图进行平均并上采样到与输入样本同样的尺寸;经过归一化、取阈值获得分类过程中所依据的显著特征,以解释单被试的分类结果;对于多个被试,将同类被试的特征图先取平均,归一化后取阈值获得分类过程中所依据的组显著特征,用于解释多被试的分类结果。从多个被试的复数静息态fMRI数据中提取DMN成分后,分别建立SSP图和SSM图的样本集,用于训练两个结构相同的CNN模型;本发明的显著图可视化方法显示出SSP图比SSM图在CNN网络的内部传递中生成了更完整、区分度更高的显著特征,提高了CNN模型分类的可信度。 | ||
搜索关键词: | 一种 基于 显著 图解 释多被试 复数 fmri 数据 cnn 分类 结果 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111480785.3/,转载请声明来源钻瓜专利网。
- 上一篇:一种转炉炉前复合挡帘
- 下一篇:一种活性污泥污水处理设备