[发明专利]一种基于多特征结合深度学习对机床主轴故障的诊断方法在审
申请号: | 201911116235.6 | 申请日: | 2019-11-15 |
公开(公告)号: | CN110909782A | 公开(公告)日: | 2020-03-24 |
发明(设计)人: | 吴继春;阳广兴;方海国 | 申请(专利权)人: | 湘潭大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G06Q50/04 |
代理公司: | 北京和信华成知识产权代理事务所(普通合伙) 11390 | 代理人: | 焦海峰 |
地址: | 411100 *** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例公开了一种基于多特征结合深度学习对机床主轴故障的诊断方法,通过对机床装置所出现的故障进行故障分类、故障原因分析、提取故障特征的影响因素,并选取可量化的故障因素作为模型的输入,再对输入数据进行预处理,通过建立LSTM网络建立数控机床的多变量时间序列诊断模型,将输出的诊断结果与DS证据理论结合针,最终达到故障诊断的目的,从而得到一种关于数控机床故障诊断的方法,本发明采用LSTM网络为诊断模型能有效的监察出数控机床在一段时间前后发生故障的可能性及有效性,并使用DS证据理论对模型输出的结果进行融合,得出诊断结果。提高了机床的可靠性与诊断的精确性。 | ||
搜索关键词: | 一种 基于 特征 结合 深度 学习 机床 主轴 故障 诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湘潭大学,未经湘潭大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911116235.6/,转载请声明来源钻瓜专利网。