[发明专利]基于FLASH存算阵列的脉冲型卷积神经网络有效
申请号: | 201910741894.2 | 申请日: | 2019-08-12 |
公开(公告)号: | CN110543933B | 公开(公告)日: | 2022-10-21 |
发明(设计)人: | 黄鹏;项亚臣;康晋锋;刘晓彦;韩润泽 | 申请(专利权)人: | 北京大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/063 |
代理公司: | 中科专利商标代理有限责任公司 11021 | 代理人: | 周天宇 |
地址: | 100871*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本公开提供了一种基于FLASH存算阵列的脉冲型卷积神经网络,包括:采样模块、基于FLASH的存算阵列及其对应的神经元模块、以及计数器模块;所述采样模块用于对输入图像进行采样,得到输入脉冲;所述基于FLASH的存算阵列存储有权重矩阵,其对输入脉冲与权重矩阵进行向量矩阵乘法运算,运算结果以电流形式输出;所述神经元模块对基于FLASH的存算阵列的运算结果进行积分,生成输出脉冲;所述计数器模块统计输出层的神经元模块产生的脉冲数量,将具有最大脉冲数量的神经元模块的脉冲数量作为识别结果。 | ||
搜索关键词: | 基于 flash 阵列 脉冲 卷积 神经网络 | ||
【主权项】:
1.一种基于FLASH存算阵列的脉冲型卷积神经网络,其特征在于,包括:采样模块、基于FLASH的存算阵列及其对应的神经元模块、以及计数器模块;/n所述采样模块用于对输入图像进行采样,得到输入脉冲;/n所述基于FLASH的存算阵列存储有权重矩阵,其对输入脉冲与权重矩阵进行向量矩阵乘法运算,运算结果以电流形式输出;/n所述神经元模块对基于FLASH的存算阵列的运算结果进行积分,生成输出脉冲;/n所述计数器模块统计输出层的神经元模块产生的脉冲数量,将具有最大脉冲数量的神经元模块的脉冲数量作为识别结果。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学,未经北京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910741894.2/,转载请声明来源钻瓜专利网。