[发明专利]基于加权基分类器的stacking集成污水处理故障诊断方法有效
申请号: | 201910566728.3 | 申请日: | 2019-06-27 |
公开(公告)号: | CN110363230B | 公开(公告)日: | 2021-07-20 |
发明(设计)人: | 许玉格;莫华森;罗飞;邓晓燕 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G06Q50/06;G06Q50/26 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 冯炳辉 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于加权基分类器的stacking集成污水处理故障诊断方法,用均值法补全污水数据中属性不完整的样本的缺陷项,将其归一化到[0,1]区间中;设置基分类器隐层节点数、正则化系数、核宽度的最优参数;利用处理好的训练样本对基分类器进行3折交叉验证,获得基分类器的原始输出,并得到每个基分类器对于训练样本集的G‑mean值;根据基分类器G‑mean值,定义权值计算公式,得到每个基分类器的输出权值;将基分类器的原始输出转化为概率型输出,结合其输出权值,构造出元训练集;利用元训练集对元分类器进行训练,得到最终的诊断模型。本发明可以提高污水处理过程中故障诊断的整体性能。 | ||
搜索关键词: | 基于 加权 分类 stacking 集成 污水处理 故障诊断 方法 | ||
【主权项】:
1.基于加权基分类器的stacking集成污水处理故障诊断方法,其特征在于,包括以下步骤:1)原始污水数据中某些样本在某些属性上存在缺失值,对这些样本采用均值法补全其缺失值,并将所有属性值归一化到[0,1]区间;2)利用步骤1)中处理好的完整的污水样本作为Stacking两层学习框架中的第一层基分类器的原始输入,其中基分类器选择支持向量机SVM、加权极限学习机WELM和相关向量机RVM,分别对3个基分类器进行3折交叉验证,得到第一层学习对每个污水样本的诊断结果,即3个基分类器对于每个污水样本在4个类别上的输出值,并且得到3个基分类器对于训练样本的G‑mean值;3)根据步骤2)中得到的G‑mean值,定义基于G‑mean值的基分类器输出权值计算公式,获得基分类器hi(x)对应的输出权值αi;4)将步骤2)中的输出结果转化为概率型输出,即得到了每个原始污水样本分别属于4个类别的概率值,利用每个样本属于4个类别的概率值乘以在步骤3)中获得的基分类器的权值αi,加上原始的类别标签,构造成新的训练集,称为元训练集;5)用步骤4)得到的元训练集作为Stacking两层学习框架中第二层元分类器的输入,其中选择WELM作为第二层的元分类器,得到最终的诊断模型Mstacking;6)用步骤1)相同的方法填补污水待测数据的缺失值,并将其归一化到[0,1]区间,通过第一层基分类器在训练样本D上训练学习产生的模型Mk,K=1,2,3,分别对应3个基分类器,对处理后的待测数据输出预测结果;7)对步骤6)中的预测结果用步骤4)相同的方法进行处理,在此基础上构成Mstacking的输入,其输出分类结果即为待测数据对应的故障诊断结果;8)进行参数寻优,需要寻优的参数有WELM模型的隐层节点数L、最优正则化系数C及RVM模型的核宽度σ,寻优方法为网格法,以寻优得到的最优参数为基础,训练基分类器和元分类器。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910566728.3/,转载请声明来源钻瓜专利网。