[发明专利]后量子安全的格上无证书签密方法在审
申请号: | 201910519022.1 | 申请日: | 2019-06-17 |
公开(公告)号: | CN110176995A | 公开(公告)日: | 2019-08-27 |
发明(设计)人: | 俞惠芳;白璐 | 申请(专利权)人: | 西安邮电大学 |
主分类号: | H04L9/08 | 分类号: | H04L9/08;H04L9/06;H04L9/32;H04L9/00 |
代理公司: | 西安永生专利代理有限责任公司 61201 | 代理人: | 申忠才 |
地址: | 710121 陕西省西*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种后量子安全的格上无证书签密方法,是由系统初始化、密钥提取、密钥生成、用户签密、验证步骤组成。本发明借鉴无证书签密和格密码思想,构造出了一种后量子安全的格上无证书签密方法,无证书签密的效率高于先无证书签名后加密的效率,并且比基于格上的无证书签名方法增加了加密功能,相比于有限域离散对数和椭圆曲线离散对数假设下的无证书签密方法,可以抗量子计算攻击并且计算效率更高。本发明克服了证书管理问题和密钥托管问题,具有抵抗量子计算攻击、运算效率高等优点,可适用于电子签密领域。 | ||
搜索关键词: | 量子 离散对数 量子计算 系统初始化 计算效率 加密功能 密钥生成 密钥提取 密钥托管 椭圆曲线 运算效率 证书管理 攻击 安全 加密 验证 抵抗 | ||
【主权项】:
1.一种后量子安全的格上无证书签密方法,其特征在于它是由下述步骤组成:A、系统初始化(A1)可信方选取素数模q:q=poly(n)其中n为安全参数,poly(n)为关于n的多项式;(A2)可信方对log q向上取整得到整数k,取整数N为2n与k的乘积;(A3)可信方定义带错误学习的错误率α∈(0,1),选取高斯分布的偏差s1:
(A4)可信方定义哈希函数H1和哈希函数H2:H1:
H2:
(A5)密钥生成中心用陷门生成算法Gentrap(1n,1N,q)得到nk行nk列的矩阵R和n行N列的矩阵A:
其中
G为一个n行nk列的矩阵;(A6)可信方定义离散高斯分布的参数
其中![]()
整数l≥5nlog q,λ为整数域Z中随机选取的正整数;(A7)可信方确定原像抽样算法的参数s2:
其中S1(R)表示矩阵R的奇异值;(A8)可信方公开系统参数params:params={A,R,H1,H2,s1,s2,χB}其中χB为误差分布、与离散高斯分布Dz,qα相同,B为误差分布参数;B、密钥提取(B1)密钥生成中心KGC确定随机化身份u:u=H1(ID)其中ID∈{0,1}*、为用户的身份;(B2)密钥生成中心KGC采用原像抽样算法
得到部分私钥d,
(B3)密钥生成中心KGC通过安全信道将部分私钥d传送给用户,用户验证满足Ad=u且
C、密钥生成(C1)身份为ID的用户选择自己的秘密值xID,确定私钥sk:
(C2)用户确定部分公钥b
其中e1为选自误差分布的M维向量、为正实数,B为n行M列矩阵,BT为矩阵B的转置矩阵,M与时间复杂度O(nlogq)相等;(C3)用户设置公钥pk
D、用户签密(D1)发送者随机选取向量y:
其中
(D2)用户设置部分签名h
其中m为明文;(D3)用户以概率
输出签名σ′:σ′=ε+h其中ε为部分签名,σ′编码后得到σ;(D4)用户确定部分密文V1、部分密文V2以及部分密文V:![]()
V=m+(b,r)+(w,H1(ID))+2e modq其中,r为M长的序列,w与e2为n维向量,e为一维向量;(D5)用户输出签密密文cc=(V|V1|V2);E、验证(E1)接收方获得密文c,用接收方的公私钥对(pk2,sk2)进行解签密得到明文m:m=[V‑(V1,x)‑(V2,d)]qmod2(E2)接收方通过(ID,ε,h,m)得到验证参数h′
当
并且h′=h时,签名成立,否则不成立。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安邮电大学,未经西安邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910519022.1/,转载请声明来源钻瓜专利网。