[发明专利]基于深度强化神经网络的内河船舶干舷检测方法有效
申请号: | 201811452126.7 | 申请日: | 2018-11-30 |
公开(公告)号: | CN109375235B | 公开(公告)日: | 2020-05-12 |
发明(设计)人: | 谢磊;郭文轩;刘颖;邱文聪;刘雪涛;张笛 | 申请(专利权)人: | 武汉理工大学 |
主分类号: | G01S17/88 | 分类号: | G01S17/88;G06N3/04 |
代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 王琪 |
地址: | 430070 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度强化神经网络的内河船舶干舷检测方法,将激光雷达与联动云台设立在内河岸边的高杆上,云台带动激光雷达调整检测高度和朝向角,对船舶的一侧进行扫描,获取不同检测参数下的船舶轮廓图像,利用强化学习神经网络作为强化学习值函数的逼近器,将船舶轮廓信息输入强化学习神经网络,从而确定当前激光雷达与联动云台做出何种动作来正确识别当前船舶干舷。本发明基于卷积神经网络对图像的识别能力,结合强化学习算法共同构建了深度强化神经网络,克服了深度学习网络在船舶超载识别领域现有的技术不足,提升了激光雷达对船舶干舷信息的检测能力,从而为内河船舶吃水情况的自动判别提供了技术支持。 | ||
搜索关键词: | 基于 深度 强化 神经网络 内河 船舶 检测 方法 | ||
【主权项】:
1.一种基于深度强化神经网络的内河船舶干舷检测方法,其特征在于,包括如下步骤:步骤1,将激光雷达与联动云台设立在内河岸边的高杆上,每类船舶场景内设定相应的激光雷达检测参数调整区域,针对不同类型的内河场景选择激光雷达布设位置,由联动云台带动激光雷达调整检测高度和朝向角,对船舶的一侧进行扫描,通过激光雷达现场采集船舶点云信息;步骤2,卷积神经网络NL的训练阶段:根据历史数据整理相关的船舶线轮廓图像样本,训练卷积神经网络NL使其能识别船舶外轮廓的激光扫描点云数据,识别并提取船舶干舷位置,解算船舶干舷的真实高度,并给出相应的置信度;步骤3,强化学习神经网络NQ训练阶段:该阶段以卷积神经网络NL所识别的船舶干舷所在位置信息及其置信度为输入数据,通过联动云台对激光雷达布设高度、朝向角的反复调整和强化学习,获取激光雷达最佳的布设参数,以确保卷积神经网络识别结果的置信度最优;步骤4,实时数据预处理阶段:通过激光雷达现场采集每一帧船舶点云信息,预处理成线轮廓图像;步骤5,现场船舶吃水情况判别阶段:将步骤4中的线轮廓图像经过训练好的卷积神经网络进行干舷识别,给出置信度数据,然后由训练好的强化学习网络对置信度进行处理,以判断激光雷达的布设高度和朝向角是否需要微调,并借助联动云台实现微调,直到卷积网络的给出置信度达到最优,最终得到船舶的吃水情况。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉理工大学,未经武汉理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811452126.7/,转载请声明来源钻瓜专利网。