[发明专利]一种基于LE算法的工业监测数据聚类方法在审
| 申请号: | 201811097330.1 | 申请日: | 2018-09-19 |
| 公开(公告)号: | CN109409407A | 公开(公告)日: | 2019-03-01 |
| 发明(设计)人: | 谢国;张永艳;刘涵;王文卿;梁莉莉;张春丽;孙澜澜 | 申请(专利权)人: | 西安理工大学 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62 |
| 代理公司: | 北京国昊天诚知识产权代理有限公司 11315 | 代理人: | 杨洲 |
| 地址: | 710048*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于LE算法的工业监测数据聚类方法,包括如下步骤:步骤1、对工业系统的监测数据进行采集,并进行预处理;步骤2、基于拉普拉斯特征映射LE算法进行建模,将步骤1中的采样数据作为输入数据,通过计算并输出低维数据;步骤3、基于密度聚类方法DBSCAN进行建模,步骤2的低维数据作为该模型的输入,对其进行聚类;步骤4、输出:聚类后的集合C={C1,C2,…,CK},Co,o=1,2,...,K为聚类之后的第o个聚类簇。该方法首先对多变量数据进行降维,再对降维后数据进行聚类,同时又可以保证计算量,提高了数据聚类的效率;该方法可对高维的采样数据进行一个压缩,并根据数据的内在特征对数据本身进行聚类,便于发现数据的规律。 | ||
| 搜索关键词: | 聚类 数据聚类 算法 采样数据 工业监测 低维 建模 降维 预处理 输出 工业系统 监测数据 密度聚类 多变量 计算量 聚类簇 映射 高维 集合 采集 压缩 保证 发现 | ||
【主权项】:
1.一种基于LE算法的工业监测数据聚类方法,其特征在于,包括如下步骤:步骤1、对工业系统的监测数据进行采集,并进行预处理;步骤2、基于拉普拉斯特征映射LE算法进行建模,将步骤1中的采样数据作为输入数据,通过计算并输出低维数据;步骤3、基于密度聚类方法DBSCAN进行建模,步骤2的低维数据作为该模型的输入,对其进行聚类;步骤4、输出:聚类后的集合C={C1,C2,…,CK},Co,o=1,2,...,K为聚类之后的第o个聚类簇。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学,未经西安理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811097330.1/,转载请声明来源钻瓜专利网。





