[发明专利]一种基于XGBoost算法的电力系统暂态稳定判别方法有效

专利信息
申请号: 201810381824.6 申请日: 2018-04-25
公开(公告)号: CN108551167B 公开(公告)日: 2020-04-17
发明(设计)人: 王慧芳;张晨宇 申请(专利权)人: 浙江大学
主分类号: H02J3/00 分类号: H02J3/00
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 忻明年
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出一种基于XGBoost算法的电力系统暂态稳定判别方法。本发明首先使用电网仿真软件模拟待评估电网各种运行方式下节点、线路故障后的暂态过程。从仿真数据中提取电气量特征,利用暂稳判据确定暂稳标签。然后使用样本数据训练XGBoost模型。针对暂态稳定预测中两类错误严重程度不同的特点,引入注意力系数对算法的损失函数进行修正。使用logistic函数将模型输出概率化。本发明具有较高的准确率和召回率,同时能以概率方式捕捉较为确定的预测和相对不确定的预测之间的差别,从而可以避免模型的一部分误输出。
搜索关键词: 一种 基于 xgboost 算法 电力系统 稳定 判别 方法
【主权项】:
1.一种基于XGBoost算法的电力系统暂态稳定判别方法,其特征在于,该方法包括以下步骤:步骤(1),利用电力系统仿真软件模拟待评估系统在各种运行方式之下,各节点、线路处发生故障所带来的后果;由此形成大量和该电网暂态稳定性有关的原始数据;步骤(2),从原始数据中提取特征,并确定暂稳标签;利用故障后发电机功角差是否发散判定系统是否发生失稳状况;对于各类稳态运行方式,提取出各类电气量特征,作为后续XGBoost算法的特征输入;由此形成一定数量的用于建模电力系统暂态稳定的样本数据;步骤(3),采用XGBoost算法并进行适用性改进,利用获取的样本数据进行模型训练;在训练过程中,针对暂态稳定预测过程中两类错误严重程度不同的特点,引入注意力系数对XGBoost算法的损失函数进行修正,使得模型对不稳定样本的预测情况减少;使用logistic函数用于将模型输出概率化,用于衡量XGBoost模型输出的可靠程度,预防部分误预测;步骤(4),XGBoost模型训练成熟之后,根据电网能量管理系统记录下的电网实时运行信息,构成能够反映电网稳态运行状态的电气量特征;输入XGBoost模型,即可实时判别电力系统某些可能的故障所带来的暂态稳定后果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810381824.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top