[发明专利]一种基于XGBoost算法的电力系统暂态稳定判别方法有效

专利信息
申请号: 201810381824.6 申请日: 2018-04-25
公开(公告)号: CN108551167B 公开(公告)日: 2020-04-17
发明(设计)人: 王慧芳;张晨宇 申请(专利权)人: 浙江大学
主分类号: H02J3/00 分类号: H02J3/00
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 忻明年
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 xgboost 算法 电力系统 稳定 判别 方法
【说明书】:

发明提出一种基于XGBoost算法的电力系统暂态稳定判别方法。本发明首先使用电网仿真软件模拟待评估电网各种运行方式下节点、线路故障后的暂态过程。从仿真数据中提取电气量特征,利用暂稳判据确定暂稳标签。然后使用样本数据训练XGBoost模型。针对暂态稳定预测中两类错误严重程度不同的特点,引入注意力系数对算法的损失函数进行修正。使用logistic函数将模型输出概率化。本发明具有较高的准确率和召回率,同时能以概率方式捕捉较为确定的预测和相对不确定的预测之间的差别,从而可以避免模型的一部分误输出。

技术领域

本发明属于电力系统领域,具体地说是一种电力系统暂态稳定判别方法。

背景技术

由于电网互联水平提高、负荷日益增加、新能源接入、线路传输能力限制等因素,电力系统运行愈发接近其稳定极限,电网的稳定运行显示出更大的重要性,从而暂态稳定评估问题(Transient Stability Assessment,TSA)更加受到人们的关注。传统的基于时域仿真的TSA方法受到计算速度的限制,难以满足在线应用的需要。近年来,随着人工智能技术的快速发展,基于机器学习算法的暂态稳定评估成为学者的研究热点。

机器学习算法是一类数据驱动的建模方法,根据所用数据源的不同,基于机器学习方法的暂态稳定评估研究可分为两大类。第一类同时使用故障前和故障后特征作为模型的数据输入,第二类仅使用故障前的特征作为数据输入。故障前特征即为系统处于稳态运行时可以检测到的特征,如线路潮流、节点电压等;故障后特征,如发电机转子加速度等动态特征,仅在系统真正发生故障后,才可以被检测到。电网的暂态过程发展迅速,一旦系统发生故障,留给调度人员的反应时间已经很少,所以,针对电网实际运行,指导意义更大的是使用第二类数据源的建模方法,根据电网稳态运行时的各种信息,判别各类故障可能造成的后果,从而可以及时调整运行方式,起到故障预防的作用。

在这一领域的研究中,仍然有待解决的问题主要有以下两方面。一方面是模型的评估准确度仍有提升空间。近年来,一些新的机器学习算法在准确度上有着超出传统机器学习算法的表现,使用此类新算法进行暂态稳定评估有望进一步提升准确度。另一方面是机器学习算法均难以达到百分之百的准确率,往往不可避免会有一些错误,对于电网运行,错误的模型输出可能对运行人员带来错误引导,从而引发严重的误操作事故。现有文献的分析大多围绕算法准确度,对于被错误分类的样本没有专门的统计研究,然而,对于非机理性的机器学习算法,如何有效避免模型的可能失误也是一个重要问题。

发明内容

本发明所要解决的技术问题是克服现有技术存在的缺陷,包括建模精度有待进一步提升、误预测预防问题研究不充分,提出一种基于XGBoost算法的电力系统暂态稳定性判别方法。

本发明解决技术问题所采取的技术方案为:

首先,利用电力系统仿真软件模拟待评估电网在各种运行方式下,各节点、线路处发生故障所带来的后果。由此形成大量和该电网暂态稳定性有关的原始数据。

其次,从原始数据中提取特征,并确定暂稳标签。利用故障后发电机功角差是否发散判定系统是否发生失稳状况。对于各种稳态运行方式,提取出各类电气量特征,作为后续XGBoost算法的特征输入。由此形成一定数量的用于建立电力系统暂态稳定评估模型的样本数据。

然后,采用XGBoost算法并进行适用性改进,利用获取的样本数据进行模型训练。在训练过程中,针对暂态稳定预测过程中两类错误严重程度不同的特点,引入注意力系数对算法的损失函数进行修正,使得模型对不稳定样本的预测情况减少;使用logistic函数用于将模型输出概率化,用于衡量XGBoost模型输出的可靠程度,预防部分误预测。

最后,基于XGBoost算法的暂态稳定评估模型训练成熟之后,可以根据电网能量管理系统记录下的电网实时运行信息,构成能够反映电网稳态运行状态的电气量特征。输入XGBoost模型,即可以实时评估电力系统某些可能的故障所带来的暂态稳定后果。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810381824.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top