[发明专利]一种融合多尺度信息的自动图像增强系统及方法有效
申请号: | 201810251388.0 | 申请日: | 2018-03-26 |
公开(公告)号: | CN108492271B | 公开(公告)日: | 2021-08-24 |
发明(设计)人: | 李阳;连捷;姜少波;甘彤;国商军;张琦珺;马彪彪 | 申请(专利权)人: | 中国电子科技集团公司第三十八研究所 |
主分类号: | G06T5/00 | 分类号: | G06T5/00 |
代理公司: | 合肥市浩智运专利代理事务所(普通合伙) 34124 | 代理人: | 丁瑞瑞 |
地址: | 230000 安徽省合*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种融合多尺度信息的自动图像增强系统及方法,包括:样本标定模块:采集训练集图像,对训练集图像像素级标记,确定标签的映射范围,得到对应的参考标准图像;自动构建网络模块:输入对应的参考标准图像,指定需要感知的图像范围,自动计算多尺度融合模块中卷积核大小和数目,生成卷积神经网络模型;自动训练网络模块:采用随机梯度下降法最优化像素加权损失函数,离线训练卷积神经网络模型;网络应用模块:输入新图像到训练的网络,输出原图大小的增强图像。本发明通过融合多尺度的特征,有效利用上下文信息,自动增强图像,不需人工干预。 | ||
搜索关键词: | 一种 融合 尺度 信息 自动 图像 增强 系统 方法 | ||
【主权项】:
1.一种融合多尺度信息的自动图像增强系统,其特征在于,包括以下所述模块:样本标定模块:采集训练集图像,对训练集图像像素级标记,确定标签的映射范围,得到对应的参考标准图像;自动构建网络模块:输入对应的参考标准图像,指定需要感知的图像范围,自动计算多尺度融合模块中卷积核大小和数目,生成卷积神经网络模型;自动训练网络模块:采用随机梯度下降法最优化像素加权损失函数,离线训练卷积神经网络模型;网络应用模块:输入新图像到训练的网络,输出原图大小的增强图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国电子科技集团公司第三十八研究所,未经中国电子科技集团公司第三十八研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810251388.0/,转载请声明来源钻瓜专利网。
- 信息记录介质、信息记录方法、信息记录设备、信息再现方法和信息再现设备
- 信息记录装置、信息记录方法、信息记录介质、信息复制装置和信息复制方法
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录设备、信息重放设备、信息记录方法、信息重放方法、以及信息记录介质
- 信息存储介质、信息记录方法、信息重放方法、信息记录设备、以及信息重放设备
- 信息存储介质、信息记录方法、信息回放方法、信息记录设备和信息回放设备
- 信息记录介质、信息记录方法、信息记录装置、信息再现方法和信息再现装置
- 信息终端,信息终端的信息呈现方法和信息呈现程序
- 信息创建、信息发送方法及信息创建、信息发送装置