[发明专利]基于数据挖掘的风电机组故障预警方法在审
申请号: | 201710711498.6 | 申请日: | 2017-08-18 |
公开(公告)号: | CN107609574A | 公开(公告)日: | 2018-01-19 |
发明(设计)人: | 茅大钧;黄一枫;黄加林;徐童 | 申请(专利权)人: | 上海电力学院 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G01R31/34 |
代理公司: | 上海申汇专利代理有限公司31001 | 代理人: | 吴宝根,徐颖 |
地址: | 200090 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于数据挖掘的风电机组故障预警方法,通过采用基于最大权重最小冗余的方法选择故障特征信号并对其降维,既保证了决策精度,又减少了数据处理的计算量;同时又依靠SCADA(数据采集与监视控制系统)系统的历史数据,建立了风电机组各个设备部件的预警模型,采用非线性状态估计技术,得到各个设备和部件的实时预测值。再此基础上,设计自适应阈值,避免了由于环境温度和风速变化等干扰而造成系统误报警。本方法可以在故障发生之前识别异常状态,以便及时采取相应的措施,从而进行预防检修,具有重要的实际应用价值。 | ||
搜索关键词: | 基于 数据 挖掘 机组 故障 预警 方法 | ||
【主权项】:
一种基于数据挖掘的风电机组故障预警方法,其特征在于,具体包括如下步骤:1)故障特征的选择与降维:用A个样本,每个样本包含有B个故障特征的数据集建立A×B的矩阵数据,对每个故障特征向量利用矩阵数据进行Relief加权特征选择算法进行特征权重计算,去除对分类无效的特征,保留分类能力较强的特征,用剩余的有效特征组成特征向量进行分类,实现故障特征的降维;2)故障预警模型建立:首先,根据步骤1)确定好设备的特征参数后,在历史数据的基础上,利用基于相似性原理的非线性状态估计方法,建立该设备的故障预警模型;然后任选一时刻描述该设备的状态向量Xobs输入故障预警模型,得到模型输入与输出的残差ε,进行最小化该残差处理,确定模型中对应的权值向量W,建立非参数定性模型;3)利用预警残差确定设备预警阈值:预警残差是系统的实际输出与故障预警模型估计输出的差值,根据各个设备属性以及正常时预警残差来设定设备预警阈值;4)当某个特征的预警残差估计值大于预警阈值时,则产生故障预警;当某个特征的预警残差估计值小于等于预警系统的阈值时,则不产生故障预警。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海电力学院,未经上海电力学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710711498.6/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置