[发明专利]一种基于演化聚类的评论文本分类提取方法在审

专利信息
申请号: 201611254491.8 申请日: 2016-12-30
公开(公告)号: CN108268470A 公开(公告)日: 2018-07-10
发明(设计)人: 侯大勇;李青海;简宋全;邹立斌 申请(专利权)人: 广东精点数据科技股份有限公司
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 北京隆源天恒知识产权代理事务所(普通合伙) 11473 代理人: 闫冬
地址: 510630 广东省广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于演化聚类的评论文本分类提取方法,该方法包括步骤S1:采集评论样本,对评论内容进行分词以及去除停用词;步骤S2:对文本特征进行处理,除去关联性低或不相关的特征项;步骤S3:将文本特征项根据文本情感向量空间模型,赋予不同权重;步骤S4:利用k‑medoids演化聚类算法对文本特征进行聚类;步骤S5:对各个时间段的聚类结果进行统计,从而得出结论。与现有技术相比:本发明提供了一种基于演化聚类的评论文本分类提取方法,解决了文本特征中可能面临的数据“稀疏性”的问题,同时也降低了计算的复杂度;本发明的方法对异常数据敏感度高、稳定性强,并具有较高的聚类精度。
搜索关键词: 聚类 评论文本 文本特征 分类 向量空间模型 文本特征项 聚类结果 聚类算法 评论内容 文本情感 稳定性强 异常数据 复杂度 关联性 敏感度 时间段 特征项 停用词 稀疏性 分词 去除 权重 样本 采集 赋予 评论 统计
【主权项】:
1.一种基于演化聚类的评论文本分类提取方法,其特征在于,该方法包括以下步骤:步骤S1:采集评论样本,对评论内容进行分词,并去除停用词,即数据的预处理;步骤S2:对文本特征进行处理,除去关联性低或不相关的特征项,采用χ2统计法对评论文本进行处理,χ2统计法的公式为: 其中,A表示包含特征α并且属于类别β的文档数量,B表示包含特征α但是不属于文档类别β的文档数量,C表示不包含特征α但是属于文档类别β的文档数量,D表示既不属于α也不包含特征β的文档数量,N表示语料中文档的总数目;步骤S3:将步骤S2得出的文本特征项根据文本情感向量空间模型,赋予不同权重,以解决数据的稀疏性问题;步骤S4:利用k‑medoids演化聚类算法,对步骤S3中已经赋予情感倾向权重的文本特征进行聚类,获取各个时间段的聚类中心;步骤S5:对各个时间段的聚类结果进行统计,得出评论文本的情感倾向与趋势。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东精点数据科技股份有限公司,未经广东精点数据科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611254491.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top