[发明专利]一种无指数运算的快速数字签名技术无效
| 申请号: | 200610092082.2 | 申请日: | 2006-06-09 |
| 公开(公告)号: | CN101086755A | 公开(公告)日: | 2007-12-12 |
| 发明(设计)人: | 郑建德 | 申请(专利权)人: | 郑建德 |
| 主分类号: | G06F21/00 | 分类号: | G06F21/00;G06Q10/00 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 100039北*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 一种无指数运算的可证明安全性的快速数字签名技术,其安全机理与传统的基于因数分解问题(IFP)的数字签名技术相同,投入实际应用的成熟度高,且同时具有传统IFP技术无可比拟的高效率,若假定n的长度为1024比特,则其速度比RSA高出两个数量级,特别适合在移动电子设备如手机、掌上电脑(PDA)的通讯中实现信息认证与信息源认证。本发明也能够实现基于身份的数字签名,特别适合在电子政务应用中实现印章和手工签名图像与公文的绑定,只要在上述图像数据后缀加针对文件全文的、基于授权人的身份的数字签名,无需安全认证中心(CA)的支持即可防止公文内容的篡改和印章、手工签名图像的挪用。 | ||
| 搜索关键词: | 一种 指数 运算 快速 数字签名 技术 | ||
【主权项】:
1.一种快速公开密钥数字签名算法,其特征在于:(a)采用如下(1),(2),(3),(4)给出的公式计算x1,y1,x2,y2,x3,y3,z1,z2: 其中n是两个秘密大素数的乘积,即RSA模数,k1,k2和k3是三个小于n且与n互质的随机整数,β是一个小于n且与n互质的秘密整数,也是签名者的私钥;(b)以上公式中的h1,h2按下式计算:h1=f(m,y1), (5)h2=g(m,y2),其中m代表被签名的信息,f和g是密码学意义的哈希(hash)函数;(c)签名者的私钥与其公钥满足如下方程:α=β2(mod n); (6)(d)签名算法输出(y1,y2,x3,y3,z1,z2)作为信息m的签名;(e)签名验证算法采用(5)中的公式和如下方程验证(y1,y2,x3,y3,z1,z2)是否为信息m的合法签名: 其中α是签名者的公钥。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于郑建德,未经郑建德许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/200610092082.2/,转载请声明来源钻瓜专利网。
- 上一篇:节能环保万能空调机
- 下一篇:管理半导体器件功耗的方法和装置





